Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Mar;6(3):899–914. doi: 10.1093/nar/6.3.899

Chemical modification study of aminoacyl-tRNA conformation.

K Negishi, S Nishimura, F Harada, H Hayatsu
PMCID: PMC327741  PMID: 375199

Abstract

Chemical reactivity of cytosines in 32P-labeled E. coli tRNA1Leu, E. coli tRNAPhe and yeast tRNAPhe before and after aminoacylation was examined by use of a cytosine-specific reagent, semicarbazide-bisulfite mixture. In all the three tRNA species examined, the cytosine residues that were susceptible to the modification were the same in the aminoacylated tRNA and the unacylated tRNA. Only a limited number of the cytosine residues were modifiable: those that occur in the anticodon, the 3'-CCA terminus, the D-loop, and the extra loop. The sites accessible by the reagent are in good agreement with the general three-dimensional structure of tRNA proposed in literature. These results indicate that the gross conformation of these tRNAs does not change on aminoacylation, and consequently favor the view that the T psi C(G) sequence could become exposed in later steps of protein synthesis in order to achieve the binding of aminoacyl tRNA to ribosomes.

Full text

PDF
899

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
  2. Caron M., Brisson N., Dugas H. Evidence for a conformational change in tRNAPhe upon aminoacylation. J Biol Chem. 1976 Mar 10;251(5):1529–1530. [PubMed] [Google Scholar]
  3. Dube S. K., Marcker K. A., Yudelevich A. The nucleotide sequence of a leucine transfer RNA from E. coli. FEBS Lett. 1970 Sep 6;9(3):168–170. doi: 10.1016/0014-5793(70)80345-3. [DOI] [PubMed] [Google Scholar]
  4. Dvorak D. J., Kidson C. Aminoacyl-tRNA conformation. Information from steroid and oligonucleotide probes. J Biol Chem. 1976 Nov 10;251(21):6730–6734. [PubMed] [Google Scholar]
  5. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  6. Hayatsu H., Inoue M. The oxygen-mediated reaction between 4-thiouracil derivatives and bi- sulfite. Isolation and characterization of 1-methyluracil 4-thiosulfate as an intermediate in the formation of 1-methyluracil-4-sulfonate. J Am Chem Soc. 1971 May 5;93(9):2301–2306. doi: 10.1021/ja00738a033. [DOI] [PubMed] [Google Scholar]
  7. Hayatsu H. Reaction of cytidine with semicarbazide in the presence of bisulfite. A rapid modification specific for single-stranded polynucleotide. Biochemistry. 1976 Jun 15;15(12):2677–2682. doi: 10.1021/bi00657a030. [DOI] [PubMed] [Google Scholar]
  8. Ikemura T., Dahlberg J. E. Small ribonucleic acids of Escherichia coli. I. Characterization by polyacrylamide gel electrophoresis and fingerprint analysis. J Biol Chem. 1973 Jul 25;248(14):5024–5032. [PubMed] [Google Scholar]
  9. Lowdon M., Goddard J. P. Chemical modification as a probe of conformational changes in transfer ribonucleic acid on aminoacylation. Biochem J. 1978 Jun 1;171(3):601–606. doi: 10.1042/bj1710601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lowdon M., Goddard J. P. The kinetics of bisulphite modification of reactive residues in E. coli tRNA2Phe. Nucleic Acids Res. 1976 Dec;3(12):3383–3396. doi: 10.1093/nar/3.12.3383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McCutchan T. F., Gilham P. T., Söll D. An improved method for the purification of tRNA by chromatography on dihydroxyboryl substituted cellulose. Nucleic Acids Res. 1975 Jun;2(6):853–864. doi: 10.1093/nar/2.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Negishi K., Harada F., Nishimura S., Hayatsu H. A rapid cytosine-specific modification of E. coli tRNA Leu 1 by semicarbazide-bisulfite, a probe for polynucleotide conformations. Nucleic Acids Res. 1977 Jul;4(7):2283–2292. doi: 10.1093/nar/4.7.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nishimura S., Harada F., Narushima U., Seno T. Purification of methionine-, valine-, phenylalanine- and tyrosine-specific tRNA from Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):133–148. doi: 10.1016/0005-2787(67)90522-9. [DOI] [PubMed] [Google Scholar]
  14. Pongs O., Wrede P., Erdmann V. A. Binding of complementary oligonucleotides to amino-acylated tRNAPhe from yeast. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1025–1033. doi: 10.1016/0006-291x(76)90757-9. [DOI] [PubMed] [Google Scholar]
  15. RajBhandary U. L., Chang S. H. Studies on polynucleotides. LXXXII. Yeast phenylalanine transfer ribonucleic acid: partial digestion with ribonuclease T-1 and derivation of the total primary structure. J Biol Chem. 1968 Feb 10;243(3):598–608. [PubMed] [Google Scholar]
  16. Rhodes D. Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification. J Mol Biol. 1975 May 25;94(3):449–460. doi: 10.1016/0022-2836(75)90214-4. [DOI] [PubMed] [Google Scholar]
  17. Rich A., RajBhandary U. L. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem. 1976;45:805–860. doi: 10.1146/annurev.bi.45.070176.004105. [DOI] [PubMed] [Google Scholar]
  18. Schwarz U., Gassen H. G. Codon-dependent rearrangement of the tertiary structure of tRNAPhe from yeast. FEBS Lett. 1977 Jun 15;78(2):267–270. doi: 10.1016/0014-5793(77)80320-7. [DOI] [PubMed] [Google Scholar]
  19. Schwarz U., Menzel H. M., Gassen H. G. Codon-dependent rearrangement of the three-dimensional structure of phenylalanine tRNA, exposing the T-psi-C-G sequence for binding to the 50S ribosomal subunit. Biochemistry. 1976 Jun 1;15(11):2484–2490. doi: 10.1021/bi00656a035. [DOI] [PubMed] [Google Scholar]
  20. Thomas G. J., Jr, Chen M. C., Lord R. C., Kotsiopoulos P. S., Tritton T. R., Mohr S. C. Transfer RNA: change of conformation upon aminoacylation determined by Raman spectroscopy. Biochem Biophys Res Commun. 1973 Sep 18;54(2):570–577. doi: 10.1016/0006-291x(73)91461-7. [DOI] [PubMed] [Google Scholar]
  21. WOLFENDEN R. THE MECHANISM OF HYDROLYSIS OF AMINO ACYL RNA. Biochemistry. 1963 Sep-Oct;2:1090–1092. doi: 10.1021/bi00905a031. [DOI] [PubMed] [Google Scholar]
  22. Wong Y. P., Reid B. R., Kearns D. R. Conformation of charged and uncharged tRNA. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2193–2195. doi: 10.1073/pnas.70.8.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yoshida M. The nucleotide sequency of tRNA Gly from yeast. Biochem Biophys Res Commun. 1973 Feb 5;50(3):779–784. doi: 10.1016/0006-291x(73)91312-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES