Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Apr;6(4):1371–1385. doi: 10.1093/nar/6.4.1371

Synthesis of human insulin gene. Part I. Development of reversed-phase chromatography in the modified triester method. Its application in the rapid and efficient synthesis of eight deoxyribooligonucleotides fragments constituting human insulin A DNA.

H M Hsiung, R Brousseau, J Michniewicz, S A Narang
PMCID: PMC327778  PMID: 450699

Abstract

Preparative reversed-phase thin layer chromatography on silanized silica-gel (RP-2 and RP-18) has been developed to purify triester deoxyribooligonucleotides prepared by the modified triester method. The effectiveness of this technique has been demonstrated in the rapid synthesis of eight pure deoxyribooligonucleotides constituting the sequence of human insulin A DNA. The sequence of each of the deoxyribooligonucleotides was confirmed by the two-dimensional mobility-shift method of finger-printing.

Full text

PDF
1371

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamiak R. W., Barciszewska M. Z., Biala E., Grzéskowiak K., Kierzek R., Kraszewski A., Markiewicz W. T., Wiewiórowski M. Nucleoside-3'-phosphotriesters as key intermediates for the oligoribonucleotide synthesis. III. An improved preparation of nucleoside 3'-phosphotriesters, their 1H NMR characterization and new conditions for removal of 2-cyanoethyl group. Nucleic Acids Res. 1976 Dec;3(12):3397–3408. doi: 10.1093/nar/3.12.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arentzen R., Reese C. B. The phosphotriester approach to oligonucleotide synthesis: Preparation of oligo- and poly-thymidylic acids. J Chem Soc Perkin 1. 1977;4:445–460. doi: 10.1039/p19770000445. [DOI] [PubMed] [Google Scholar]
  3. Bahl C. P., Wu R., Itakura K., Katagiri N., Narang S. A. Chemical and enzymatic synthesis of lactose operator of Escherichia coli and its binding to lactose repressor. Proc Natl Acad Sci U S A. 1976 Jan;73(1):91–94. doi: 10.1073/pnas.73.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bahl C. P., Wu R., Stawinsky J., Narang S. A. Minimal length of the lactose operator sequence for the specific recognition by the lactose repressor. Proc Natl Acad Sci U S A. 1977 Mar;74(3):966–970. doi: 10.1073/pnas.74.3.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Catlin J. C., Cramer F. Deoxy oligonucleotide synthesis via the triester method. J Org Chem. 1973 Jan 26;38(2):245–250. doi: 10.1021/jo00942a011. [DOI] [PubMed] [Google Scholar]
  6. Eckstein F., Rizk I. Synthese von Oligodesoxynucleotiden über Phosphorsäure-triester. Chem Ber. 1969;102(7):2362–2377. doi: 10.1002/cber.19691020724. [DOI] [PubMed] [Google Scholar]
  7. Itakura K., Hirose T., Crea R., Riggs A. D., Heyneker H. L., Bolivar F., Boyer H. W. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science. 1977 Dec 9;198(4321):1056–1063. doi: 10.1126/science.412251. [DOI] [PubMed] [Google Scholar]
  8. Itakura K., Katagiri N., Bahl C. P., Wightman R. H., Narang S. A. Improved triester approach for the synthesis of pentadecathymidylic acid. J Am Chem Soc. 1975 Dec 10;97(25):7327–7332. doi: 10.1021/ja00858a020. [DOI] [PubMed] [Google Scholar]
  9. Khorana H. G., Agarwal K. L., Besmer P., Büchi H., Caruthers M. H., Cashion P. J., Fridkin M., Jay E., Kleppe K., Kleppe R. Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli. 1. General introduction. J Biol Chem. 1976 Feb 10;251(3):565–570. [PubMed] [Google Scholar]
  10. Sood A. K., Narang S. A. A rapid and convenient synthesis of poly-thymidylic acid by the modified triester approach. Nucleic Acids Res. 1977 Aug;4(8):2757–2765. doi: 10.1093/nar/4.8.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stawinski J., Hozumi T., Narang S. A., Bahl C. P., Wu R. Arylsulfonyltetrazoles, new coupling reagents and further improvements in the triester method for the synthesis of deoxyribooligonucleotides. Nucleic Acids Res. 1977 Feb;4(2):353–371. doi: 10.1093/nar/4.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tu C. P., Jay E., Bahl C. P., Wu R. A reliable mapping method for sequence determination of oligodeoxyribonucleotides by mobility shift analysis. Anal Biochem. 1976 Jul;74(1):73–93. doi: 10.1016/0003-2697(76)90311-0. [DOI] [PubMed] [Google Scholar]
  13. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
  14. Zamecnik P. C., Stephenson M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978 Jan;75(1):280–284. doi: 10.1073/pnas.75.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES