Abstract
Significant differences are observed between the CD spectra of eu- and heterochromatin prepared by fractionating mechanically sheared rat liver chromatin on linear sucrose density gradients. Heterochromatin has a broad positive CD at 270--280 nm, a cross-over point at 256 nmn, and a negative shoulder at 248 nm. Euchromatin displays a shift in the positive peak to 267 nm and the cross-over point to 254 nm, as well as an intensification of the 267 nm peak. The negative shoulder at 248 nm is absent in euchromatin. These spectral differences between eu- and heterochromatin are present in both low and high ionic strength media. Mechanical shearing does not induce CD alteration and anomalous light scattering is absent in our system. The greater RNA content of euchromatin compared to heterochromatin cannot account for the spectral differences. These results suggest that the DNA conformation of euchromatin is distinct from that of heterochromatin and they may provide clues to the reasons for the greater transcription of euchromatin.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson K. M., Chance H., Kadohama N. Separation of transcriptionally active from less active rat ventral prostate chromatin. Exp Cell Res. 1975 Aug;94(1):176–190. doi: 10.1016/0014-4827(75)90544-3. [DOI] [PubMed] [Google Scholar]
- BRAHMS J., MOMMAERTS W. F. A STUDY OF CONFORMATION OF NUCLEIC ACIDS IN SOLUTION BY MEANS OF CIRCULAR DICHROISM. J Mol Biol. 1964 Oct;10:73–88. doi: 10.1016/s0022-2836(64)80029-2. [DOI] [PubMed] [Google Scholar]
- Chalkley R., Jensen R. H. A study of the structure of isolated chromatin. Biochemistry. 1968 Dec;7(12):4380–4388. doi: 10.1021/bi00852a034. [DOI] [PubMed] [Google Scholar]
- FRENSTER J. H., ALLFREY V. G., MIRSKY A. E. REPRESSED AND ACTIVE CHROMATIN ISOLATED FROM INTERPHASE LYMPHOCYTES. Proc Natl Acad Sci U S A. 1963 Dec;50:1026–1032. doi: 10.1073/pnas.50.6.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henner D., Kelley R. I., Furth J. J. Transcription of fractionated calf thymus chromatin by RNA polymerase of calf thymus and Escherichia coli. Biochemistry. 1975 Oct 21;14(21):4764–4771. doi: 10.1021/bi00692a031. [DOI] [PubMed] [Google Scholar]
- Hjelm R. P., Jr, Huang R. C. The contribution of RNA and non-histone proteins to the circular dichroism spectrum of chromatin. Biochemistry. 1975 Apr 22;14(8):1682–1688. doi: 10.1021/bi00679a021. [DOI] [PubMed] [Google Scholar]
- Hjelm R. P., Jr, Huang R. C. The role of histones in the conformation of DNA in chromatin as studied by circular dichroism. Biochemistry. 1974 Dec 17;13(26):5275–5283. doi: 10.1021/bi00723a004. [DOI] [PubMed] [Google Scholar]
- Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89–110. doi: 10.1002/bip.1973.360120109. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lewis E. A., DeBuysere M. S., Rees A. W. Configuration of unsheared nucleohistone. Effects of ionic strength and of histone F1 removal. Biochemistry. 1976 Jan 13;15(1):186–192. doi: 10.1021/bi00646a029. [DOI] [PubMed] [Google Scholar]
- Maciewicz R. A., Li H. J. Effects of shearing on chromatin structure. Biochemistry. 1978 Mar 21;17(6):962–967. doi: 10.1021/bi00599a003. [DOI] [PubMed] [Google Scholar]
- McCarthy B. J., Nishiura J. T., Doenecke D., Nasser D. S., Johnson C. B. Transcription and chromatin structure. Cold Spring Harb Symp Quant Biol. 1974;38:763–771. doi: 10.1101/sqb.1974.038.01.081. [DOI] [PubMed] [Google Scholar]
- Moyer G. H., Gumbiner B., Austin G. E. Binding of N-hydroxy acetylaminofluorene to eu- and heterochromatin fractions of rat liver in vivo. Cancer Lett. 1977 Mar;2(4-5):259–265. doi: 10.1016/s0304-3835(77)80030-x. [DOI] [PubMed] [Google Scholar]
- Nicolini C., Baserga R., Kendall F. DNA structure in sheared and unsheared chromatin. Science. 1976 May 21;192(4241):796–798. doi: 10.1126/science.1265482. [DOI] [PubMed] [Google Scholar]
- Nicolini C., Baserga R. Role of nonhistone chromosomal proteins in determining circular dichroism spectra of chromatin. Arch Biochem Biophys. 1975 Aug;169(2):678–685. doi: 10.1016/0003-9861(75)90212-x. [DOI] [PubMed] [Google Scholar]
- Paul I. J., Duerksen J. D. Analyses of relative protein content and distribution of histones in euchromatic and heterochromatic fractions. Can J Biochem. 1977 Nov;55(11):1140–1144. doi: 10.1139/o77-170. [DOI] [PubMed] [Google Scholar]
- Rodriguez L. V., Becker F. F. Rat liver chromatin. Distribution of histone and nonhistone proteins in eu- and heterochromatin. Arch Biochem Biophys. 1976 Apr;173(2):438–447. doi: 10.1016/0003-9861(76)90281-2. [DOI] [PubMed] [Google Scholar]
- Scheer U. Changes of nucleosome frequency in nucleolar and non-nucleolar chromatin as a function of transcription: an electron microscopic study. Cell. 1978 Mar;13(3):535–549. doi: 10.1016/0092-8674(78)90327-6. [DOI] [PubMed] [Google Scholar]
- Simpson R. T., Sober H. A. Circular dichroism of calf liver nucleohistone. Biochemistry. 1970 Aug 4;9(16):3103–3109. doi: 10.1021/bi00818a001. [DOI] [PubMed] [Google Scholar]
- Wagner T. E., Vandegrift V. Circular dichrosim studies of calf thymus Ca 2+ nucleohistone IV. Biochemistry. 1972 Apr 11;11(8):1431–1436. doi: 10.1021/bi00758a016. [DOI] [PubMed] [Google Scholar]
- de Murcia G., Das G. C., Erard M., Daune M. Superstructure and CD spectrum as probes of chromatin integrity. Nucleic Acids Res. 1978 Feb;5(2):523–535. doi: 10.1093/nar/5.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
