Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Apr;6(4):1669–1682. doi: 10.1093/nar/6.4.1669

Cooperative interactions among protein and RNA components of the 50S ribosomal subunit of Escherichia coli.

P Spierer, C C Wang, T L Marsh, R A Zimmermann
PMCID: PMC327799  PMID: 109811

Abstract

Copperative interactions among constituents of the 50S ribosomal subunit of Escherichia coli have been analyzed in order to elucidate its assembly and structural organization. Proteins L5 and L18 were shown to be necessary and sufficient to effect the association of the 5S and 23S RNAs into a quaternary complex that contains equimolar amounts of all four components. Measurement of diffusion constants by laser light scattering revealed that integration of the 5S RNA induced the 23S RNA to adopt a somewhat more open conformation. An investigation of relationships among proteins associated with the central and 3' portions of the 23S RNA demonstrated that attachment of L5, L10 + L11, and L28 depends upon the RNA-binding proteins L16, L2, and L1 + L3 + L6, respectively, and that L2 interacts with the central segment of the 23S RNA. These data, as well as the results of others, have been used to construct a scheme that depicts both direct and indirect associations of the 5S RNA, the 23S RNA, and over two-thirds of the subunit proteins. The 5' third of the 23S RNA apparently organizes the proteins required to nucleate essential reactions, whereas a region within 500 to 1500 bases of its 3' terminus is associated primarily with proteins involved in the major functional activities of the 50S ribosomal particle.

Full text

PDF
1669

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amils R., Matthews E. A., Cantor C. R. An efficient in vitro total reconstitution of the Escherichia coli 50S ribosomal subunit. Nucleic Acids Res. 1978 Jul;5(7):2455–2470. doi: 10.1093/nar/5.7.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bear D. G., Schleich T., Noller H. F., Garrett R. A. Alteration of 5S RNA conformation by ribosomal proteins L18 and L25. Nucleic Acids Res. 1977 Jul;4(7):2511–2526. doi: 10.1093/nar/4.7.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Branlant C., Krol A., Sriwidada J., Brimacombe R. RNA sequences associated with proteins L1, L9, and L5, L18, L25, in ribonucleoprotein fragments isolated from the 50-S subunit of Escherichia coli ribosomes. Eur J Biochem. 1976 Nov 15;70(2):483–492. doi: 10.1111/j.1432-1033.1976.tb11039.x. [DOI] [PubMed] [Google Scholar]
  4. Branlant C., Sri Widada J., Krol A., Ebel J. P. RNA sequences in ribonucleoprotein fragments of the complex formed from ribosomal 23-S RNA and ribosomal protein L24 of Escherichia coli. Eur J Biochem. 1977 Mar 15;74(1):155–170. doi: 10.1111/j.1432-1033.1977.tb11377.x. [DOI] [PubMed] [Google Scholar]
  5. Branlant C., Widada J. S., Krol A., Ebel J. P. Studies on the primary structure of the ribosomal 23S RNA of Escherichia coli: II. A characterisation and an alignment of 24 sections spanning the entire molecule and its application to the localisation of specific fragments. Nucleic Acids Res. 1977 Dec;4(12):4323–4345. doi: 10.1093/nar/4.12.4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brimacombe R., Stöffler G., Wittmann H. G. Ribosome structure. Annu Rev Biochem. 1978;47:217–249. doi: 10.1146/annurev.bi.47.070178.001245. [DOI] [PubMed] [Google Scholar]
  7. Brosius J., Schiltz E., Chen R. The primary structure of the 5S RNA binding protein L18 from Escherichia coli ribosomes. FEBS Lett. 1975 Aug 15;56(2):359–361. doi: 10.1016/0014-5793(75)81127-6. [DOI] [PubMed] [Google Scholar]
  8. Brownlee G. G., Sanger F., Barrell B. G. Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. Nature. 1967 Aug 12;215(5102):735–736. doi: 10.1038/215735a0. [DOI] [PubMed] [Google Scholar]
  9. Chen R., Ehrke G. The primary structure of the 5 S RNA binding protein L5 of Escherichia coli ribosomes. FEBS Lett. 1976 Oct 15;69(1):240–245. doi: 10.1016/0014-5793(76)80695-3. [DOI] [PubMed] [Google Scholar]
  10. Dohme F., Nierhaus K. H. Role of 5S RNA in assembly and function of the 50S subunit from Escherichia coli. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2221–2225. doi: 10.1073/pnas.73.7.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dohme F., Nierhaus K. H. Total reconstitution and assembly of 50 S subunits from Escherichia coli Ribosomes in vitro. J Mol Biol. 1976 Nov 15;107(4):585–599. doi: 10.1016/s0022-2836(76)80085-x. [DOI] [PubMed] [Google Scholar]
  12. Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
  13. Fuenteun J., Monier R., Garrett R., Le Bret M., Le Pecq J. B. Effect of 50 S subunit proteins L5, L18 and L25 on the fluorescence of 5 S RNA-bound ethidium bromide. J Mol Biol. 1975 Apr 25;93(4):535–541. doi: 10.1016/0022-2836(75)90245-4. [DOI] [PubMed] [Google Scholar]
  14. Garret R. A., Müller S., Spierer P., Zimmermann R. A. Letter: Binding of 50 S ribosomal subunit proteins to 23 S RNA of Escherichia coli. J Mol Biol. 1974 Sep 15;88(2):553–557. doi: 10.1016/0022-2836(74)90503-8. [DOI] [PubMed] [Google Scholar]
  15. Gray P. N., Garrett R. A., Stoffler G., Monier R. An attempt at the identification of the proteins involved in the incorporation of 5-S RNA during 50-S ribosomal subunit assembly. Eur J Biochem. 1972 Jul 24;28(3):412–421. doi: 10.1111/j.1432-1033.1972.tb01927.x. [DOI] [PubMed] [Google Scholar]
  16. Herr W., Noller H. F. A fragment of 23S RNA containing a nucleotide sequence complementary to a region of 5S RNA. FEBS Lett. 1975 May 1;53(2):248–252. doi: 10.1016/0014-5793(75)80030-5. [DOI] [PubMed] [Google Scholar]
  17. Homann H. E., Nierhaus K. H. Ribosomal proteins. Protein compositions of biosynthetic precursors and artifical subparticles from ribosomal subunits in Escherichia coli K 12. Eur J Biochem. 1971 May 28;20(2):249–257. doi: 10.1111/j.1432-1033.1971.tb01388.x. [DOI] [PubMed] [Google Scholar]
  18. Kühlbrandt W., Garrett R. A. A ribonucleoprotein core in the 50 S ribosomal subunit of Escherichia coli. FEBS Lett. 1978 Oct 15;94(2):207–212. doi: 10.1016/0014-5793(78)80939-9. [DOI] [PubMed] [Google Scholar]
  19. Mizushima S., Nomura M. Assembly mapping of 30S ribosomal proteins from E. coli. Nature. 1970 Jun 27;226(5252):1214–1214. doi: 10.1038/2261214a0. [DOI] [PubMed] [Google Scholar]
  20. Muto A., Ehresmann C., Fellner P., Zimmermann R. A. RNA-protein interactions in the ribosome. I. Characterization and ribonuclease digestion of 16 S RNA-ribosomal protein complexes. J Mol Biol. 1974 Jun 25;86(2):411–432. doi: 10.1016/0022-2836(74)90028-x. [DOI] [PubMed] [Google Scholar]
  21. Möller K., Rinke J., Ross A., Buddle G., Brimacombe R. The use of formaldehyde in RNA-protein cross-linking studies with ribosomal subunits from Escherichia coli. Eur J Biochem. 1977 Jun 1;76(1):175–187. doi: 10.1111/j.1432-1033.1977.tb11583.x. [DOI] [PubMed] [Google Scholar]
  22. Newton I., Brimacombe R. Two specific ribonucleoprotein fragments from the 50-S sub-particle of Escherichia coli ribosomes. Eur J Biochem. 1974 Oct 2;48(2):513–518. doi: 10.1111/j.1432-1033.1974.tb03792.x. [DOI] [PubMed] [Google Scholar]
  23. Nierhaus K. H., Dohme F. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4713–4717. doi: 10.1073/pnas.71.12.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Olson T., Fournier M. J., Langley K. H., Ford N. C., Jr Detection of a major conformational change in transfer ribonucleic acid by laser light scattering. J Mol Biol. 1976 Apr 5;102(2):193–203. doi: 10.1016/s0022-2836(76)80048-4. [DOI] [PubMed] [Google Scholar]
  25. Spierer P., Bogdanov A. A., Zimmermann R. A. Parameters for the interaction of ribosomal proteins L5, L18, and L25 with 5S RNA from Escherichia coli. Biochemistry. 1978 Dec 12;17(25):5394–5398. doi: 10.1021/bi00618a012. [DOI] [PubMed] [Google Scholar]
  26. Spierer P., Zimmerman R. A., Mackie G. A. RNA-protein interactions in the ribosome. Binding of 50-S-subunit proteins to 5' and 3' terminal segments of the 23-S RNA. Eur J Biochem. 1975 Apr 1;52(3):459–468. doi: 10.1111/j.1432-1033.1975.tb04014.x. [DOI] [PubMed] [Google Scholar]
  27. Spierer P., Zimmerman R. A. RNA-protein interactions in the ribosome. VIII. Co-operative interactions in the 50 S subunit of Escherichia coli. J Mol Biol. 1976 May 25;103(3):647–653. doi: 10.1016/0022-2836(76)90222-9. [DOI] [PubMed] [Google Scholar]
  28. Spierer P., Zimmermann R. A. RNA-protein interactions in the ribosome. Binding of proteins L1, L3, L6, L13 and L23 to specific fragments of the 23S RNA. FEBS Lett. 1976 Sep 15;68(1):71–75. doi: 10.1016/0014-5793(76)80407-3. [DOI] [PubMed] [Google Scholar]
  29. Spierer P., Zimmermann R. A. Stoichiometry, cooperativity, and stability of interactions between 5S RNA and proteins L5, L18, and L25 from the 50S ribosomal subunit of Escherichia coli. Biochemistry. 1978 Jun 27;17(13):2474–2479. doi: 10.1021/bi00606a002. [DOI] [PubMed] [Google Scholar]
  30. Spillmann S., Dohme F., Nierhaus K. H. Assembly in vitro of the 50 S subunit from Escherichia coli ribosomes: proteins essential for the first heat-dependent conformational change. J Mol Biol. 1977 Sep 25;115(3):513–523. doi: 10.1016/0022-2836(77)90168-1. [DOI] [PubMed] [Google Scholar]
  31. Yu R. S., Wittmann H. G. The sequence of steps in the attachment of 5-S RNA to cores of Escherichia coli ribosomes. Biochim Biophys Acta. 1973 Oct 26;324(3):375–385. doi: 10.1016/0005-2787(73)90282-7. [DOI] [PubMed] [Google Scholar]
  32. Zimmermann J., Erdmann V. A. Identification of Escherichia coli and Bacillus stearothermophilus ribosomal protein binding sites on Escherichia coli 5S RNA. Mol Gen Genet. 1978 Apr 17;160(3):247–257. doi: 10.1007/BF00332968. [DOI] [PubMed] [Google Scholar]
  33. Zimmermann R. A., Stöffler G. Purification of proteins from the 50S ribosomal subunit of Escherichia coli by ion-exchange chromatography. Biochemistry. 1976 May 4;15(9):2007–2017. doi: 10.1021/bi00654a031. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES