Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Apr;6(4):1683–1694. doi: 10.1093/nar/6.4.1683

Conformational changes induced in DNA by in vitro reaction with N-hydroxy-N-2-aminofluorene.

M Spodheim-Maurizot, G Saint-Ruf, M Leng
PMCID: PMC327800  PMID: 450711

Abstract

The conformation of DNA modified in vitro by the covalent binding of N-OH-AF was investigated by ultraviolet absorbance, circular dichroism and by radioimmunoassay using specific antibodies against Guo-AAF and nDNA-AAF. The results obtained by both physico-chemical and immunological methods are in agreement with a model involving destabilized regions in the double helical DNA around the carcinogen molecule in which, however, the -AF residues are stacked to the adjacent nucleotides. The RIA results show that the -AF residues are less accessible to antibodies in native than in denatured DNA-AF and thus suggest -AF residues partially buried in the interior of the DNA helix. The present model is compared to the one existing for DNA modified by reaction with N-AcO-AAF (DNA-AAF) (1,2).

Full text

PDF
1683

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fuchs R. P., Daune M. P. Dynamic structure of DNA modified with the carcinogen N-acetoxy-n-2-acetylaminofluorene. Biochemistry. 1974 Oct 8;13(21):4435–4440. doi: 10.1021/bi00718a028. [DOI] [PubMed] [Google Scholar]
  2. Fuchs R. P., Lefevre J. F., Pouyet J., Daune M. P. Comparative orientation of the fluorene residue in native DNA modified by N-acetoxy-N-2-acetylaminofluorene and two 7-halogeno derivatives. Biochemistry. 1976 Jul 27;15(15):3347–3351. doi: 10.1021/bi00660a027. [DOI] [PubMed] [Google Scholar]
  3. Fuchs R., Daune M. Changes of stability and conformation of DNA following the covalent binding of a carcinogen. FEBS Lett. 1971 May 10;14(4):206–208. doi: 10.1016/0014-5793(71)80618-x. [DOI] [PubMed] [Google Scholar]
  4. Fuchs R., Daune M. Physical basis of chemical carcinogenesis by N-2-fluorenylacetamide derivatives and analogs. FEBS Lett. 1973 Aug 15;34(2):295–298. doi: 10.1016/0014-5793(73)80815-4. [DOI] [PubMed] [Google Scholar]
  5. Georghiou S. Interaction of acridine drugs with DNA and nucleotides. Photochem Photobiol. 1977 Jul;26(1):59–68. doi: 10.1111/j.1751-1097.1977.tb07450.x. [DOI] [PubMed] [Google Scholar]
  6. Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. 3. Small internal loops resulting from mismatches. J Mol Biol. 1973 Aug 5;78(2):301–319. doi: 10.1016/0022-2836(73)90118-6. [DOI] [PubMed] [Google Scholar]
  7. Guigues M., Leng M. Reactivity of antibodies to guanosine modified by the carcinogen N-acetoxy-N-2-acetylaminofluorene. Nucleic Acids Res. 1979 Feb;6(2):733–744. doi: 10.1093/nar/6.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Irving C. C. Enzymatic deacetylation of N-hydroxy-2-acetylaminofluorene by liver microsomes. Cancer Res. 1966 Jul;26(7):1390–1396. [PubMed] [Google Scholar]
  9. Kadlubar F. F., Miller J. A., Miller E. C. Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res. 1977 Mar;37(3):805–814. [PubMed] [Google Scholar]
  10. Kapuler A. M., Michelson A. M. The reaction of the carcinogen N-acetoxy-2-acetyl-aminofluorene with DNA and other polynucleotides and its stereochemical implications. Biochim Biophys Acta. 1971 Mar 25;232(3):436–450. doi: 10.1016/0005-2787(71)90598-3. [DOI] [PubMed] [Google Scholar]
  11. King C. M., Phillips B. Instability of fluorenylamine-substituted polynucleotides: loss of carcinogen and production of an altered nucleic acid. Chem Biol Interact. 1970 Oct;2(3):267–271. doi: 10.1016/0009-2797(70)90030-x. [DOI] [PubMed] [Google Scholar]
  12. King C. M., Phillips B. N-hydroxy-2-fluorenylacetamide. Reaction of the carcinogen with guanosine, ribonucleic acid, deoxyribonucleic acid, and protein following enzymatic deacetylation or esterification. J Biol Chem. 1969 Nov 25;244(22):6209–6216. [PubMed] [Google Scholar]
  13. Kriek E. Carcinogenesis by aromatic amines. Biochim Biophys Acta. 1974 Sep 9;355(2):177–203. doi: 10.1016/0304-419x(74)90003-1. [DOI] [PubMed] [Google Scholar]
  14. Kriek E. Difference in binding of 2-acetylaminofluorene to rat liver deoxyribonucleic acid and ribosomal ribonucleic acid in vivo. Biochim Biophys Acta. 1968 Jun 18;161(1):273–275. doi: 10.1016/0005-2787(68)90323-7. [DOI] [PubMed] [Google Scholar]
  15. Kriek E., Miller J. A., Juhl U., Miller E. C. 8-(N-2-fluorenylacetamido)guanosine, an arylamidation reaction product of guanosine and the carcinogen N-acetoxy-N-2-fluorenylacetamide in neutral solution. Biochemistry. 1967 Jan;6(1):177–182. doi: 10.1021/bi00853a029. [DOI] [PubMed] [Google Scholar]
  16. Kriek E. On the interaction of N-2-fluorenylhydroxylamine with nucleic acids in vitro. Biochem Biophys Res Commun. 1965 Sep 22;20(6):793–799. doi: 10.1016/0006-291x(65)90088-4. [DOI] [PubMed] [Google Scholar]
  17. Kriek E. On the mechanism of action of carcinogenic aromatic amines. I. Binding of 2-acetylaminofluorene and N-hydroxy-2-acetylaminofluorene to rat-liver nucleic acids in vivo. Chem Biol Interact. 1969 Oct;1(1):3–17. doi: 10.1016/0009-2797(69)90015-5. [DOI] [PubMed] [Google Scholar]
  18. Kriek E. Persistent binding of a new reaction product of the carcinogen N-hydroxy-N-2-acetylaminofluorene with guanine in rat liver DNA in vivo. Cancer Res. 1972 Oct;32(10):2042–2048. [PubMed] [Google Scholar]
  19. Leng M., Sage E., Fuchs R. P., Duane M. P. Antibodies to DNA modified by the carcinogen N-acetoxy-N-2-acetylaminofluorene. FEBS Lett. 1978 Aug 15;92(2):207–210. doi: 10.1016/0014-5793(78)80755-8. [DOI] [PubMed] [Google Scholar]
  20. Levine A. F., Fink L. M., Weinstein I. B., Grunberger D. Effect of N-2-acetylaminofluorene modification on the conformation of nucleic acids. Cancer Res. 1974 Feb;34(2):319–327. [PubMed] [Google Scholar]
  21. Miller E. C., Juhl U., Miller J. A. Nucleic acid guanine: reaction with the carcinogen N-acetoxy-2-acetylaminofluorene. Science. 1966 Sep 2;153(3740):1125–1127. doi: 10.1126/science.153.3740.1125. [DOI] [PubMed] [Google Scholar]
  22. Miller E. C. Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential Address. Cancer Res. 1978 Jun;38(6):1479–1496. [PubMed] [Google Scholar]
  23. Miller J. A. Carcinogenesis by chemicals: an overview--G. H. A. Clowes memorial lecture. Cancer Res. 1970 Mar;30(3):559–576. [PubMed] [Google Scholar]
  24. Weisburger J. H., Weisburger E. K. Biochemical formation and pharmacological, toxicological, and pathological properties of hydroxylamines and hydroxamic acids. Pharmacol Rev. 1973 Mar;25(1):1–66. [PubMed] [Google Scholar]
  25. Wynder E. L., Goldsmith R. The epidemiology of bladder cancer: a second look. Cancer. 1977 Sep;40(3):1246–1268. doi: 10.1002/1097-0142(197709)40:3<1246::aid-cncr2820400340>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES