Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Apr;6(4):1721–1729. doi: 10.1093/nar/6.4.1721

Neutron scattering on nuclei.

P Baudy, S Bram
PMCID: PMC327803  PMID: 450713

Abstract

Very small angle neutron scattering studies have been made on intact nuclei under a variety of solution conditions. Scattering maxima are observed at 30 to 40 nm and at 18 nm in most environments. Although the spacing, intensity and presence of the maximum near 40 nm varies considerably with environment the 18 nm is rather constant. The 30 to 40 nm maximum appears to be best interpreted by the presence of 35 to 50 nm diameter fibers in nuclei. An important result is that no scattering maximum was observed near 11 nm, suggesting that a tightly super coiled nucleofilament with such a pitch is not present.

Full text

PDF
1721

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudy P., Bram S. Chromatin fiber dimensions and nucleosome orientation: a neutron scattering investigation. Nucleic Acids Res. 1978 Oct;5(10):3697–3714. doi: 10.1093/nar/5.10.3697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bram S., Baudy P., Lepault J., Hermann D. Chromatin very small angle neutron scattering: further evidence for a 30 nm diameter super coil in dilute solutions. Nucleic Acids Res. 1977 Jul;4(7):2275–2282. doi: 10.1093/nar/4.7.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bram S., Butler-Browne G., Baudy P., Ibel K. Quaternary structure of chromatin. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1043–1045. doi: 10.1073/pnas.72.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bram S., Butler-Browne G., Bradbury E. M., Baldwin J., Reiss C., Ibel K. Chromatin neutron and X-ray diffraction studies and high resolution melting of DNA-histone complexes. Biochimie. 1974;56(6-7):987–994. doi: 10.1016/s0300-9084(74)80519-5. [DOI] [PubMed] [Google Scholar]
  5. Carlson R. D., Olins D. E. Chromatin model calculations: Arrays of spherical nu bodies. Nucleic Acids Res. 1976 Jan;3(1):89–100. doi: 10.1093/nar/3.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter B. G., Baldwin J. P., Bradbury E. M., Ibel K. Organisation of subunits in chromatin. Nucleic Acids Res. 1976 Jul;3(7):1739–1746. doi: 10.1093/nar/3.7.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GLAUERT A. M., DANIEL M. R., LUCY J. A., DINGLE J. T. Studies on the mode of action of excess of vitamin A. VII. Changes in the fine structure of erythrocytes during haemolysis by vitamin A. J Cell Biol. 1963 Apr;17:111–121. doi: 10.1083/jcb.17.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hozier J., Renz M., Nehls P. The chromosome fiber: evidence for an ordered superstructure of nucleosomes. Chromosoma. 1977 Jul 18;62(4):301–317. doi: 10.1007/BF00327030. [DOI] [PubMed] [Google Scholar]
  10. KRATKY O. X-RAY SMALL ANGLE SCATTERING WITH SUBSTANCES OF BIOLOGICAL INTEREST IN DILUTED SOLUTIONS. Prog Biophys Mol Biol. 1963;13:105–173. doi: 10.1016/s0079-6107(63)80015-2. [DOI] [PubMed] [Google Scholar]
  11. Kornberg R. D., Thomas J. O. Chromatin structure; oligomers of the histones. Science. 1974 May 24;184(4139):865–868. doi: 10.1126/science.184.4139.865. [DOI] [PubMed] [Google Scholar]
  12. Laval M., Bouteille M. Synthetic activity of isolated rat liver nuclei. I. Ultrastructural study at various steps of isolation. Exp Cell Res. 1973 Feb;76(2):337–348. doi: 10.1016/0014-4827(73)90385-6. [DOI] [PubMed] [Google Scholar]
  13. Olins D. E., Olins A. L. Physical studies of isolated eucaryotic nuclei. J Cell Biol. 1972 Jun;53(3):715–736. doi: 10.1083/jcb.53.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Panyim S., Bilek D., Chalkley R. An electrophoretic comparison of vertebrate histones. J Biol Chem. 1971 Jul 10;246(13):4206–4215. [PubMed] [Google Scholar]
  15. Pardon J. F., Wilkins M. H., Richards B. M. Super-helical model for nucleohistone. Nature. 1967 Jul 29;215(5100):508–509. doi: 10.1038/215508a0. [DOI] [PubMed] [Google Scholar]
  16. Sedat J., Manuelidis L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):331–350. doi: 10.1101/sqb.1978.042.01.035. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES