Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979;6(6):2041–2056. doi: 10.1093/nar/6.6.2041

Rapid synthesis of oligodeoxyribonucleotides on a grafted polymer support.

V K Potapov, V P Veiko, O N Koroleva, Z A Shabarova
PMCID: PMC327835  PMID: 461181

Abstract

Rapid synthesis of oligodeoxyribonucleotides is described by a solid phase method. Polysterene grafted on the surface of polytetrafluoroethylene has been found to be an adequate support. The properties of the support were studied in the synthesis of a number of oligonucleotides 6 to 15 nucleotides long. A flow-type semi-automatic synthesizer has been used. Each nucleotide addition involves seven steps and takes 8 hours. Oligonucleotide isolated and purified by ion-exchange chromatography amounts to 1-3 mumol per gram of support.

Full text

PDF
2041

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brownlee G. G., Sanger F. Chromatography of 32P-labelled oligonucleotides on thin layers of DEAE-cellulose. Eur J Biochem. 1969 Dec;11(2):395–399. doi: 10.1111/j.1432-1033.1969.tb00786.x. [DOI] [PubMed] [Google Scholar]
  2. Büchi H., Khorana H. G. CV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxyribonucleotide corresponding to the nucleotide sequence 31 to 50. J Mol Biol. 1972 Dec 28;72(2):251–288. doi: 10.1016/0022-2836(72)90148-9. [DOI] [PubMed] [Google Scholar]
  3. Gait M. J., Sheppard R. C. Rapid synthesis of oligodeoxyribonucleotides. II. Machine-aided solid-phase syntheses of two nonanucleotides and an octanucleotide. Nucleic Acids Res. 1977 Dec;4(12):4391–4410. doi: 10.1093/nar/4.12.4391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gait M. J., Sheppard R. C. Rapid synthesis of oligodeoxyribonucleotides: a new solid-phase method. Nucleic Acids Res. 1977 Apr;4(4):1135–1158. doi: 10.1093/nar/4.4.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hachmann J., Khorana H. G. Studies on polynucleotides. 93. A further study of the synthesis of deoxyribopolynucleotides using preformed oligonucleotide blocks. J Am Chem Soc. 1969 May 7;91(10):2749–2757. doi: 10.1021/ja01038a057. [DOI] [PubMed] [Google Scholar]
  6. Haseltine W. A., Maxam A. M., Gilbert W. Rous sarcoma virus genome is terminally redundant: the 5' sequence. Proc Natl Acad Sci U S A. 1977 Mar;74(3):989–993. doi: 10.1073/pnas.74.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ohtsuka E., Morioka S., Ikehara M. Studies on transfer ribonucleic acids and related compounds. V. Synthesis of ribonucleotides with phosphomonoester end groups on a polymer support. J Am Chem Soc. 1972 May 3;94(9):3229–3233. doi: 10.1021/ja00764a055. [DOI] [PubMed] [Google Scholar]
  8. TOMLINSON R. V., TENER G. M. THE EFFECT OF UREA, FORMAMIDE, AND GLYCOLS ON THE SECONDARY BINDING FORCES IN THE ION-EXCHANGE CHROMATOGRAPHY OF POLYNUCLEOTIDES OF DEAE-CELLULOSE. Biochemistry. 1963 Jul-Aug;2:697–702. doi: 10.1021/bi00904a013. [DOI] [PubMed] [Google Scholar]
  9. Weber H., Khorana H. G. CIV. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. Chemical synthesis of an icosadeoxynucleotide corresponding to the nucleotide sequence 21 to 40. J Mol Biol. 1972 Dec 28;72(2):219–249. doi: 10.1016/0022-2836(72)90147-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES