Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Jun 11;6(7):2611–2626. doi: 10.1093/nar/6.7.2611

1H NMR studies on the conformational characteristics of 2-thiopyrimidine nucleotides found in transfer RNAs.

S Yokoyama, Z Yamaizumi, S Nishimura, T Miyazawa
PMCID: PMC327875  PMID: 379825

Abstract

The molecular conformations of naturally occurring 2-thiopyrimidine nucleosides (5-methylaminomethyl-2-thiouridine, 5-methoxycarbonylmethyl-2-thiouridine and 2-thiocytidine) and 5'-mononucleotides (5-methylaminomethyl-2-thiouridine 5'-monophosphate and 2-thiocytidine 5'-monophosphate) in 2H2O solution were elucidated by analyses of the proton NMR spin-coupling constant, nuclear Overhauser effect, and lanthanide-induced shifts and relaxation enhancements. As monomers, these nucleotides are almost exclusively in the 3E-gg-anti form, even in the absence of ordinary stabilizing factors of this form; i. e., base-stacking and base-pairing interactions with other nucleotide units. This inherent conformational rigidity of the 2-thiopyrimidine units probably contributes to stability of the conformation of tRNA.

Full text

PDF
2611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. J Am Chem Soc. 1973 Apr 4;95(7):2333–2344. doi: 10.1021/ja00788a038. [DOI] [PubMed] [Google Scholar]
  2. Arnott S., Hukins D. W., Dover S. D., Fuller W., Hodgson A. R. Structures of synthetic polynucleotides in the A-RNA and A'-RNA conformations: x-ray diffraction analyses of the molecular conformations of polyadenylic acid--polyuridylic acid and polyinosinic acid--polycytidylic acid. J Mol Biol. 1973 Dec 5;81(2):107–122. doi: 10.1016/0022-2836(73)90183-6. [DOI] [PubMed] [Google Scholar]
  3. Bähr W., Faerber P., Scheit K. H. The effects of thioketo substitution upon uracil-adenine interactions in polyribonucleotides. Synthesis and properties of poly (2-thiouridylic acid) and poly(2,4-dithiouridylic acid). Eur J Biochem. 1973 Mar 15;33(3):535–544. doi: 10.1111/j.1432-1033.1973.tb02713.x. [DOI] [PubMed] [Google Scholar]
  4. Cramer F., Gottschalk E. M., Matzura H., Scheit K. H., Sternbach H. The synthesis of the alternating copolymer poly(r(A-s4U)) by RNA polymerase of Escherichia coli. Eur J Biochem. 1971 Apr;19(3):379–385. doi: 10.1111/j.1432-1033.1971.tb01327.x. [DOI] [PubMed] [Google Scholar]
  5. Faerber P., Scheit K. H., Sommer H. A new polynucleotide complex poly(s 2 C)-poly(I). Eur J Biochem. 1972 May;27(1):109–115. doi: 10.1111/j.1432-1033.1972.tb01816.x. [DOI] [PubMed] [Google Scholar]
  6. Faerber P. The synthesis of the alternating copolymer poly (r(G-s2C) by RNA polymerase of E. coli. A polynucleotide with an extremely high thermal stability. FEBS Lett. 1974 Aug 15;44(1):111–116. doi: 10.1016/0014-5793(74)80317-0. [DOI] [PubMed] [Google Scholar]
  7. Hillen W., Egert E., Lindner H. J., Gassen H. G. Crystal and molecular structure of 2-thio-5 carboxymethyluridine and its methyl ester: helix terminator nucleosides in the first position of some anticodons. Biochemistry. 1978 Nov 28;17(24):5314–5320. doi: 10.1021/bi00617a036. [DOI] [PubMed] [Google Scholar]
  8. Hillen W., Egert E., Lindner H. J., Gassen H. G. Restriction or amplification of wobble recognition: the structure of 2-thio-5-methylaminomethyluridine and the interaction of odd uridines with the anticodon loop backbone. FEBS Lett. 1978 Oct 15;94(2):361–364. doi: 10.1016/0014-5793(78)80977-6. [DOI] [PubMed] [Google Scholar]
  9. Kruse T. A., Clark B. F. The effect of specific structural modification on the biological activity of E. coli arginine tRNA. Nucleic Acids Res. 1978 Mar;5(3):879–892. doi: 10.1093/nar/5.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee C. H., Ezra F. S., Kondo N. S., Sarma R. H., Danyluk S. S. Conformational properties of dinucleoside monophosphates in solution: dipurines and dipyrimidines. Biochemistry. 1976 Aug 10;15(16):3627–3639. doi: 10.1021/bi00661a034. [DOI] [PubMed] [Google Scholar]
  11. Lee C. H., Sarma R. H. Nuclear magnetic resonance studies of the solution conformation of nucleoside diphosphohexoses and their components. Biochemistry. 1976 Feb 10;15(3):697–704. doi: 10.1021/bi00648a038. [DOI] [PubMed] [Google Scholar]
  12. Mazumdar S. K., Saenger W. Molecular structure of poly-2-thiouridylic acid, a double helix with non-equivalent polynucleotide chains. J Mol Biol. 1974 May 15;85(2):213–219. doi: 10.1016/0022-2836(74)90361-1. [DOI] [PubMed] [Google Scholar]
  13. Plesiewicz E., Stepień E., Bolewska K., Wierzchowski K. L. Stacking self-association of pyrimidine nucleosides and of cytosines: effects of methylation and thiolation. Nucleic Acids Res. 1976 May;3(5):1295–1306. doi: 10.1093/nar/3.5.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Remin M., Shugar D. Conformation of the exocyclic 5'-CH 2 OH in nucleosides and nucleotides in aqueous solution from specific assignments of the H 5' and H 5'' signals in the NMR spectra. Biochem Biophys Res Commun. 1972 Aug 7;48(3):636–642. doi: 10.1016/0006-291x(72)90395-6. [DOI] [PubMed] [Google Scholar]
  15. Scheit K. H., Faerber P. The effects of thioketo substitution upon uracil-adenine interactions in polyribonucleotides. Synthesis and properties of the alternating polynucleotides poly(r(A-s2U)) and poly(r(A-s2s4U)). Eur J Biochem. 1975 Jan 15;50(3):549–555. doi: 10.1111/j.1432-1033.1975.tb09895.x. [DOI] [PubMed] [Google Scholar]
  16. Sen G. C., Ghosh H. P. Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5'-end of the anticodon of yeast transfer RNA Lys2. Nucleic Acids Res. 1976 Mar;3(3):523–535. doi: 10.1093/nar/3.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simuth J., Scheit K. H., Gottschalk E. M. The enzymatic synthesis of poly 4-thiouridylic acid by polynucleotide phosphorylase from Escherichia coli. Biochim Biophys Acta. 1970 Apr 15;204(2):371–380. doi: 10.1016/0005-2787(70)90156-5. [DOI] [PubMed] [Google Scholar]
  18. Stout C. D., Mizuno H., Rubin J., Brennan T., Rao S. T., Sundaralingam M. Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA. An independent investigation. Nucleic Acids Res. 1976 Apr;3(4):1111–1123. doi: 10.1093/nar/3.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Watanabe K., Oshima T., Nishimura S. CD spectra of 5-methyl-2-thiouridine in tRNA-Met-f from an extreme thermophile. Nucleic Acids Res. 1976 Jul;3(7):1703–1713. doi: 10.1093/nar/3.7.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Watanabe K., Shinma M., Oshima T., Nishimura S. Heat-induced stability of tRNA from an extreme thermophile, Thermus thermophilus. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1137–1144. doi: 10.1016/s0006-291x(76)80250-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES