Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Jun 25;6(8):2901–2917. doi: 10.1093/nar/6.8.2901

Apurinic acid endonuclease activity from mouse epidermal cells.

G Ludwig, H W Thielmann
PMCID: PMC327901  PMID: 111231

Abstract

An endonuclease activity making single-strand breaks into depurinated and alkylated DNA has been purified 500-fold from carcinogen-transformed mouse epidermal cells. The enzyme was active only at apurinic/apyrimidinic sites, regardless of whether they were produced by heating at an acidic pH or by alkylation with the ultimate carcinogen MeSO2OMe. The enzyme did not act on native DNA nor on ultraviolet-induced pyrimidine-dimers nor on steric distortions caused by modification of DNA with the carcinogen (Ac)2ONFln. The enzyme was active in the presence of 1 mM EDTA; however, at pH 7.4 optimal conditions were: 6mM MgCl2 and 40--120 mM KCl or 10--40 mM potassium phosphate. The enzyme eluted from hydroxyapatite, phosphocellulose and heparin-cellulose between 100--250 mM potassium phosphate but did not bind to DEAE-cellulose. Using four chromatographic steps the endonuclease was obtained free of exonuclease, demethylase and DNA glycosylase activity specific for DNA bases methylated with MeSO2OMe or MeNOUr. The molecular weight was 31 000 +/- 3000 as calculated from the diffusion coefficient (8.2 x 10-7 cm2/s) and the sedimentation value (2.7 S).

Full text

PDF
2901

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Durston W. E., Yamasaki E., Lee F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2281–2285. doi: 10.1073/pnas.70.8.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames B. N., Mccann J., Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975 Dec;31(6):347–364. doi: 10.1016/0165-1161(75)90046-1. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armel P. R., Wallace S. S. Apurinic endonucleases from Saccharomyces cerevisiae. Nucleic Acids Res. 1978 Sep;5(9):3347–3356. doi: 10.1093/nar/5.9.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bibor V., Verly W. G. Purification and properties of the endonuclease specific for apurinic sites of Bacillus stearothermophilus. J Biol Chem. 1978 Feb 10;253(3):850–855. [PubMed] [Google Scholar]
  6. Bouck N., di Mayorca G. Somatic mutation as the basis for malignant transformation of BHK cells by chemical carcinogens. Nature. 1976 Dec 23;264(5588):722–727. doi: 10.1038/264722a0. [DOI] [PubMed] [Google Scholar]
  7. Bowden G. T., Hohneck G., Fusenig N. E. DNA excision repair in ultraviolet-irradiated normal and malignantly transformed mouse epidermal cell cultures. Cancer Res. 1977 Jun;37(6):1611–1617. [PubMed] [Google Scholar]
  8. Braun A., Grossman L. An endonuclease from Escherichia coli that acts preferentially on UV-irradiated DNA and is absent from the uvrA and uvrB mutants. Proc Natl Acad Sci U S A. 1974 May;71(5):1838–1842. doi: 10.1073/pnas.71.5.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duncan M. E., Brookes P. The induction of azaguanine-resistant mutants in cultured Chinese hamster cells by reactive derivatives of carcinogenic hydrocarbons. Mutat Res. 1973 Apr;21(2):107–118. [PubMed] [Google Scholar]
  10. Espejo R. T., Canelo E. S., Sinsheimer R. L. DNA of bacteriophage PM2: a closed circular double-stranded molecule. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1164–1168. doi: 10.1073/pnas.63.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fusenig N. E., Worst P. K. Mouse epidermal cell cultures. II. Isolation, characterization and cultivation of epidermal cells from perinatal mouse skin. Exp Cell Res. 1975 Jul;93(2):443–457. doi: 10.1016/0014-4827(75)90471-1. [DOI] [PubMed] [Google Scholar]
  12. Grossman L., Braun A., Feldberg R., Mahler I. Enzymatic repair of DNA. Annu Rev Biochem. 1975;44:19–43. doi: 10.1146/annurev.bi.44.070175.000315. [DOI] [PubMed] [Google Scholar]
  13. Hecht R., Thielmann H. W. Purification and characterization of an endonuclease from Micrococcus luteus that acts on depurinated and carcinogen-modified DNA. Eur J Biochem. 1978 Sep 1;89(2):607–618. doi: 10.1111/j.1432-1033.1978.tb12565.x. [DOI] [PubMed] [Google Scholar]
  14. Howard-Flanders P. DNA repair and recombination. Br Med Bull. 1973 Sep;29(3):226–235. doi: 10.1093/oxfordjournals.bmb.a071012. [DOI] [PubMed] [Google Scholar]
  15. Inoue T., Kada T. Purification and properties of a Bacillus subtilis endonuclease specific for apurinic sites in DNA. J Biol Chem. 1978 Dec 10;253(23):8559–8563. [PubMed] [Google Scholar]
  16. Kaplan J. C., Kushner S. R., Grossman L. Enzymatic repair of DNA, 1. Purification of two enzymes involved in the excision of thymine dimers from ultraviolet-irradiated DNA. Proc Natl Acad Sci U S A. 1969 May;63(1):144–151. doi: 10.1073/pnas.63.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuebler J. P., Goldthwait D. A. An endonuclease from calf liver specific for apurinic sites in DNA. Biochemistry. 1977 Apr 5;16(7):1370–1377. doi: 10.1021/bi00626a021. [DOI] [PubMed] [Google Scholar]
  18. Kuhnlein U., Lee B., Penhoet E. E., Linn S. Xeroderma pigmentosum fibroblasts of the D group lack an apurinic DNA endonuclease species with a low apparent Km. Nucleic Acids Res. 1978 Mar;5(3):951–960. doi: 10.1093/nar/5.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laval J. Two enzymes are required from strand incision in repair of alkylated DNA. Nature. 1977 Oct 27;269(5631):829–832. doi: 10.1038/269829a0. [DOI] [PubMed] [Google Scholar]
  21. Lawley P. D., Shah S. A. Methylation of DNA by 3H-14C-methyl-labelled N-methyl-N-nitrosourea--evidence for transfer of the intact methyl group. Chem Biol Interact. 1973 Aug;7(2):115–120. doi: 10.1016/0009-2797(73)90020-3. [DOI] [PubMed] [Google Scholar]
  22. Lawley P. D., Thatcher C. J. Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N'-nitro-N-nitrosoguanidine. The influence of cellular thiol concentrations on the extent of methylation and the 6-oxygen atom of guanine as a site of methylation. Biochem J. 1970 Feb;116(4):693–707. doi: 10.1042/bj1160693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
  24. Linsley W. S., Penhoet E. E., Linn S. Human endonuclease specific for apurinic/apyrimidinic sites in DNA. Partial purification and characterization of multiple forms from placenta. J Biol Chem. 1977 Feb 25;252(4):1235–1242. [PubMed] [Google Scholar]
  25. Ljungquist S., Andersson A., Lindahl T. A mammalian endonuclease specific for apurinic sites in double-stranded deoxyribonucleic acid. II. Further studies on the substrate specificity. J Biol Chem. 1974 Mar 10;249(5):1536–1540. [PubMed] [Google Scholar]
  26. Ljungquist S., Lindahl T. A mammalian endonuclease specific for apurinic sites in double-stranded deoxyribonucleic acid. I. Purification and general properties. J Biol Chem. 1974 Mar 10;249(5):1530–1535. [PubMed] [Google Scholar]
  27. Ljungquist S., Lindahl T. Relation between Escherichia coli endonucleases specific for apurinic sites in DNA and exonuclease III. Nucleic Acids Res. 1977 Aug;4(8):2871–2879. doi: 10.1093/nar/4.8.2871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ljungquist S., Nyberg B., Lindahl T. Mammalian DNA endonuclease acting at apurinic sites: absence of associated exonuclease activity. FEBS Lett. 1975 Sep 15;57(2):169–171. doi: 10.1016/0014-5793(75)80708-3. [DOI] [PubMed] [Google Scholar]
  29. Lotlikar P. D., Miller E. C., Miller J. A., Margreth A. The enzymatic reduction of the N-hydroxy derivatives of 2-acetylaminofluorene and related carcinogens by tissue preparations. Cancer Res. 1965 Nov;25(10):1743–1752. [PubMed] [Google Scholar]
  30. Nes I. F., Nissen-Meyer J. Endonuclease activities from a permanently established mouse cell line that act upon DNA damaged by ultraviolet light, acid and osmium tetroxide. Biochim Biophys Acta. 1978 Aug 23;520(1):111–121. doi: 10.1016/0005-2787(78)90012-6. [DOI] [PubMed] [Google Scholar]
  31. Pegg A. E. Enzymatic removal of O6-methylguanine from DNA by mammalian cell extracts. Biochem Biophys Res Commun. 1978 Sep 14;84(1):166–173. doi: 10.1016/0006-291x(78)90278-4. [DOI] [PubMed] [Google Scholar]
  32. Potuzak H., Wintersberger U. DNA covalently linked to carboxymethyl-cellulose and its application in affinity chromatography. FEBS Lett. 1976 Mar 15;63(1):167–170. doi: 10.1016/0014-5793(76)80218-9. [DOI] [PubMed] [Google Scholar]
  33. San R. H., Stich H. F. DNA repair synthesis of cultured human cells as a rapid bioassay for chemical carcinogens. Int J Cancer. 1975 Aug 15;16(2):284–291. doi: 10.1002/ijc.2910160211. [DOI] [PubMed] [Google Scholar]
  34. Schachat F. H., Hogness D. S. Repetitive sequences in isolated Thomas circles from Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1974;38:371–381. doi: 10.1101/sqb.1974.038.01.040. [DOI] [PubMed] [Google Scholar]
  35. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  36. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  37. Strauss B. S., Robbins M. DNA methylated in vitro by a monofunctional alkylating agent as a substrate for a specific nuclease from Micrococcus lysodeikticus. Biochim Biophys Acta. 1968 Jun 18;161(1):68–75. doi: 10.1016/0005-2787(68)90295-5. [DOI] [PubMed] [Google Scholar]
  38. Svachulová J., Satava J., Velemínský J. A barley endonuclease specific for apurinic DNA. Isolation and partial characterization. Eur J Biochem. 1978 Jun 15;87(2):215–220. doi: 10.1111/j.1432-1033.1978.tb12368.x. [DOI] [PubMed] [Google Scholar]
  39. Teebor G. W., Duker N. J. Human endonuclease activity for DNA apurinic sites. Nature. 1975 Dec 11;258(5535):544–547. doi: 10.1038/258544a0. [DOI] [PubMed] [Google Scholar]
  40. Thibodeau L., Verly W. G. Purification and properties of a plant endonuclease specific for apurinic sites. J Biol Chem. 1977 May 25;252(10):3304–3309. [PubMed] [Google Scholar]
  41. Thielmann H. W. Carcinogen-induced DNA repair in nucleotide-permeable Escherichia coli cells. Analysis of DNA repair induced by the carcinogens N-acetoxy-N-2-acetylaminofluorene and 7-bromomethyl-benz(a)anthracene. Eur J Biochem. 1976 Jan 15;61(2):501–513. doi: 10.1111/j.1432-1033.1976.tb10045.x. [DOI] [PubMed] [Google Scholar]
  42. Thielmann H. W. Detection of strand breaks in phiX 174 RFI and PM2 DNA reacted with ultimate and proximate carcinogens. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1977 Oct;90(1):37–69. doi: 10.1007/BF00306020. [DOI] [PubMed] [Google Scholar]
  43. Thielmann H. W., Vosberg H. P., Reygers U. Carcinogen-induced DNA repair in nucleotide-permeable Escherichia coli cells. Induction of DNA repair by the carcinogens methyl and ethyl nitrosourea and methyl methanesulfonate. Eur J Biochem. 1975 Aug 15;56(2):433–447. doi: 10.1111/j.1432-1033.1975.tb02250.x. [DOI] [PubMed] [Google Scholar]
  44. Tomura T., van Lancker J. L. The effect of a mammalian repair endonuclease on x-irradiated DNA. Biochim Biophys Acta. 1975 Sep 1;402(3):343–350. doi: 10.1016/0005-2787(75)90270-1. [DOI] [PubMed] [Google Scholar]
  45. Uhlenhopp E. L., Krasna A. I. Alterations in the structure of deoxyribonucleic acid on chemical methylation. Biochemistry. 1971 Aug 17;10(17):3290–3295. doi: 10.1021/bi00793a020. [DOI] [PubMed] [Google Scholar]
  46. Uziel M., Koh C. K., Cohn W. E. Rapid ion-exchange chromatographic microanalysis of ultraviolet-absorbing materials and its application to nucleosides. Anal Biochem. 1968 Oct 24;25(1):77–98. doi: 10.1016/0003-2697(68)90083-3. [DOI] [PubMed] [Google Scholar]
  47. Verly W. G., Paquette Y. An endonuclease for depurinated DNA in rat liver. Can J Biochem. 1973 Jul;51(7):1003–1009. doi: 10.1139/o73-130. [DOI] [PubMed] [Google Scholar]
  48. Verly W. G., Paquette Y., Thibodeau L. Nuclease for DNA apurinic sites may be involved in the maintenance of DNA in normal cells. Nat New Biol. 1973 Jul 18;244(133):67–69. doi: 10.1038/newbio244067a0. [DOI] [PubMed] [Google Scholar]
  49. Verly W. G., Rassart E. Purification of Escherichia coli endonuclease specific for apurinic sites in DNA. J Biol Chem. 1975 Oct 25;250(20):8214–8219. [PubMed] [Google Scholar]
  50. Vinograd J., Lebowitz J., Radloff R., Watson R., Laipis P. The twisted circular form of polyoma viral DNA. Proc Natl Acad Sci U S A. 1965 May;53(5):1104–1111. doi: 10.1073/pnas.53.5.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Westra J. G., Kriek E., Hittenhausen H. Identification of the persistently bound form of the carcinogen N-acetyl-2-aminofluorene to rat liver DNA in vivo. Chem Biol Interact. 1976 Oct 2;15(2):149–164. doi: 10.1016/0009-2797(76)90160-5. [DOI] [PubMed] [Google Scholar]
  52. Woodworth-Gutai M., Lebowitz J., Kato A. C., Denhardt D. T. Ultraviolet light irradiation of PM2 superhelical DNA. Nucleic Acids Res. 1977;4(5):1243–1256. doi: 10.1093/nar/4.5.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yuspa S. H., Hennings H., Saffiotti U. Cutaneous chemical carcinogenesis: past, present, and future. J Invest Dermatol. 1976 Jul;67(1):199–208. doi: 10.1111/1523-1747.ep12513040. [DOI] [PubMed] [Google Scholar]
  54. van Lancker J. L., Tomura T. Purification and some properties of a mammalian repair endonuclease. Biochim Biophys Acta. 1974 Jun 14;353(1):99–114. doi: 10.1016/0005-2787(74)90101-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES