Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Oct 10;7(3):547–569. doi: 10.1093/nar/7.3.547

Review: ethidium fluorescence assays. Part 1. Physicochemical studies.

A R Morgan, J S Lee, D E Pulleyblank, N L Murray, D H Evans
PMCID: PMC328039  PMID: 41222

Abstract

DNA and RNA can be assayed rapidly and very sensitively by exploiting the enhanced fluorescence of ethidium intercalated into duplex regions. By assaying at different pHs and introducing a heating/cooling cycle, a great many physicochemical aspects of DNA and RNA can be studied avoiding the use of radiolabels, and often giving information not otherwise readily obtainable. Studies are described on duplex DNA which involve measurement of extinction coefficients, cross-linking by chemicals, Cot curve analysis as well as estimation of drug-DNA binding constants. The assays can be adapted to investigate multi-stranded nucleic acid structures. The use of covalently closed circular DNA also allows rapid and extremely sensitive measurements of nicking caused by irradiation or drugs.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Kellems R. E., Bertino J. R., Schimke R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem. 1978 Mar 10;253(5):1357–1370. [PubMed] [Google Scholar]
  2. Anderson P., Bauer W. Supercoiling in closed circular DNA: dependence upon ion type and concentration. Biochemistry. 1978 Feb 21;17(4):594–601. doi: 10.1021/bi00597a006. [DOI] [PubMed] [Google Scholar]
  3. Baguley B. C., Falkenhaug E. M. The interaction of ethidium with synthetic double-stranded polynucleotides at low ionic strength. Nucleic Acids Res. 1978 Jan;5(1):161–171. doi: 10.1093/nar/5.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bauer W., Vinograd J. The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol. 1968 Apr 14;33(1):141–171. doi: 10.1016/0022-2836(68)90286-6. [DOI] [PubMed] [Google Scholar]
  5. Boer G. J. A simplified microassay of DNA and RNA using ethidium bromide. Anal Biochem. 1975 May 12;65(1-2):225–231. doi: 10.1016/0003-2697(75)90507-2. [DOI] [PubMed] [Google Scholar]
  6. Borst P., Ruttenberg G. J. Renaturation of mitochondrial DNA. Biochim Biophys Acta. 1966 Mar 21;114(3):645–647. doi: 10.1016/0005-2787(66)90117-1. [DOI] [PubMed] [Google Scholar]
  7. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  8. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  9. Champoux J. J., McConaughy B. L. Purification and characterization of the DNA untwisting enzyme from rat liver. Biochemistry. 1976 Oct 19;15(21):4638–4642. doi: 10.1021/bi00666a014. [DOI] [PubMed] [Google Scholar]
  10. Cook P. R., Brazell I. A. Spectrofluorometric measurement of the binding of ethidium to superhelical DNA from cell nuclei. Eur J Biochem. 1978 Mar 15;84(2):465–477. doi: 10.1111/j.1432-1033.1978.tb12188.x. [DOI] [PubMed] [Google Scholar]
  11. Deniss I. S., Morgan A. R. Studies on the mechanism of DNA cleavage by ethidium. Nucleic Acids Res. 1976 Feb;3(2):315–323. doi: 10.1093/nar/3.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gralla J., DeLisi C. mRNA is expected to form stable secondary structures. Nature. 1974 Mar 22;248(446):330–332. doi: 10.1038/248330a0. [DOI] [PubMed] [Google Scholar]
  13. Hsiung H., Lown J. W. Effects of alkylation by dimethyl sulfate, nitrogen mustard, and mitomycin C on DNA structure as studied by the ethidium binding assay. Can J Biochem. 1976 Dec;54(12):1047–1054. doi: 10.1139/o76-153. [DOI] [PubMed] [Google Scholar]
  14. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  15. Karsten U., Wollenberger A. Determination of DNA and RNA in homogenized cells and tissues by surface fluorometry. Anal Biochem. 1972 Mar;46(1):135–148. doi: 10.1016/0003-2697(72)90405-8. [DOI] [PubMed] [Google Scholar]
  16. Kowalski D. A procedure for the quantitation of relaxed closed circular DNA in the presence of superhelical DNA: an improved fluorometric assay for nicking-closing enzyme. Anal Biochem. 1979 Mar;93(2):346–354. doi: 10.1016/s0003-2697(79)80161-x. [DOI] [PubMed] [Google Scholar]
  17. LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Le Pecq J. B., Le Bret M., Barbet J., Roques B. DNA polyintercalating drugs: DNA binding of diacridine derivatives. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2915–2919. doi: 10.1073/pnas.72.8.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LePecq J. B., Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967 Jul 14;27(1):87–106. doi: 10.1016/0022-2836(67)90353-1. [DOI] [PubMed] [Google Scholar]
  20. Lee J. S., Morgan A. R. A rapid method for the measurement of the unwinding angle of intercalating agents and the superhelix density of circular DNAs. Nucleic Acids Res. 1978 Jul;5(7):2425–2439. doi: 10.1093/nar/5.7.2425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee J. S., Morgan A. R. The topological trapping of circular DNAs on agarose: unexpected restrictions on DNA rotation. Can J Biochem. 1978 Jun;56(6):585–591. doi: 10.1139/o78-088. [DOI] [PubMed] [Google Scholar]
  22. Lown J. W., Begleiter A., Johnson D., Morgan A. R. Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay. Can J Biochem. 1976 Feb;54(2):110–119. doi: 10.1139/o76-018. [DOI] [PubMed] [Google Scholar]
  23. Lown J. W., Majumdar K. C. Studies related to antitumor antibiotics. Part IX. Reactions of carzinophillin with DNA assayed by ethidium fluorescence. Can J Biochem. 1977 Jun;55(6):630–635. doi: 10.1139/o77-091. [DOI] [PubMed] [Google Scholar]
  24. Lown J. W., Sim S. K., Majumdar K. C., Chang R. Y. Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. Biochem Biophys Res Commun. 1977 Jun 6;76(3):705–710. doi: 10.1016/0006-291x(77)91557-1. [DOI] [PubMed] [Google Scholar]
  25. Morgan A. R., Coulter M. B., Flintoff W. F., Paetkau V. H. Enzymatic synthesis of deoxyribonucleic acids with repeating sequences. A new repeating trinucleotide deoxyribonucleic acid, d(T-C-C)n-d(G-G-A)n. Biochemistry. 1974 Apr 9;13(8):1596–1603. doi: 10.1021/bi00705a007. [DOI] [PubMed] [Google Scholar]
  26. Morgan A. R., Paetkau V. A fluorescence assay for DNA with covalently linked complementary sequences. Can J Biochem. 1972 Feb;50(2):210–216. doi: 10.1139/o72-028. [DOI] [PubMed] [Google Scholar]
  27. Morgan A. R., Pulleyblank D. E. Native and denatured DNA, cross-linked and palindromic DNA and circular covalently-closed DNA analysed by a sensitive fluorometric procedure. Biochem Biophys Res Commun. 1974 Nov 27;61(2):396–403. doi: 10.1016/0006-291x(74)90970-x. [DOI] [PubMed] [Google Scholar]
  28. Morgan A. R. Studies on polynucleotides. XCIV. Transcription of DNA's with repeating nucleotide sequences. J Mol Biol. 1970 Sep 28;52(3):441–466. doi: 10.1016/0022-2836(70)90412-2. [DOI] [PubMed] [Google Scholar]
  29. Murray N. L., Morgan A. R. Enzymatic and physical studies on the triplex dTn.dAn.rUn. Can J Biochem. 1973 Apr;51(4):436–449. doi: 10.1139/o73-051. [DOI] [PubMed] [Google Scholar]
  30. Olmsted J., 3rd, Kearns D. R. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry. 1977 Aug 9;16(16):3647–3654. doi: 10.1021/bi00635a022. [DOI] [PubMed] [Google Scholar]
  31. Paoletti C., LePecq J. B., Lehman I. R. The use of ethidium bromide-circular DNA complexes for the fluorometric analysis of breakage and joining of DNA. J Mol Biol. 1971 Jan 14;55(1):75–100. doi: 10.1016/0022-2836(71)90282-8. [DOI] [PubMed] [Google Scholar]
  32. Pulleyblank D. E., Morgan A. R. Partial purification of "omega" protein from calf thymus. Biochemistry. 1975 Nov 18;14(23):5205–5209. doi: 10.1021/bi00694a029. [DOI] [PubMed] [Google Scholar]
  33. Pyeritz R. E., Schlegel R. A., Thomas C. A., Jr Hydrodynamic shear breakage of DNA may produce single-chained terminals. Biochim Biophys Acta. 1972 Jul 31;272(4):504–509. doi: 10.1016/0005-2787(72)90505-9. [DOI] [PubMed] [Google Scholar]
  34. Riley M., Maling B. Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol. 1966 Sep;20(2):359–389. doi: 10.1016/0022-2836(66)90069-6. [DOI] [PubMed] [Google Scholar]
  35. Sim S. K., Lown J. W. The mechanism of the neocarzinostatin-induced cleavage of DNA. Biochem Biophys Res Commun. 1978 Mar 15;81(1):99–105. doi: 10.1016/0006-291x(78)91635-2. [DOI] [PubMed] [Google Scholar]
  36. Stonington O. G., Pettijohn D. E. The folded genome of Escherichia coli isolated in a protein-DNA-RNA complex. Proc Natl Acad Sci U S A. 1971 Jan;68(1):6–9. doi: 10.1073/pnas.68.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vosberg H. P., Grossman L. I., Vinograd J. Isolation and partial characterisation of the relaxation protein from nuclei of cultured mouse and human cells. Eur J Biochem. 1975 Jun 16;55(1):79–93. doi: 10.1111/j.1432-1033.1975.tb02140.x. [DOI] [PubMed] [Google Scholar]
  38. Wakelin L. P., Waring M. J. The unwinding of circular deoxyribonucleic acid by phenanthridinium drugs: structure-activity relations for the intercalation reaction. Mol Pharmacol. 1974 May;10(3):544–561. [PubMed] [Google Scholar]
  39. Wang J. C. Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic lambda DNA. J Mol Biol. 1969 Jul 14;43(1):25–39. doi: 10.1016/0022-2836(69)90076-x. [DOI] [PubMed] [Google Scholar]
  40. Waring M. Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J Mol Biol. 1970 Dec 14;54(2):247–279. doi: 10.1016/0022-2836(70)90429-8. [DOI] [PubMed] [Google Scholar]
  41. Worcel A., Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Biol. 1972 Nov 14;71(2):127–147. doi: 10.1016/0022-2836(72)90342-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES