Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1979 Oct 10;7(3):625–637. doi: 10.1093/nar/7.3.625

The effect of tRNA and tryptophanyl adenylate on limited proteolysis of beef pancreas tryptophanyl-tRNA synthetase.

V S Scheinker, S F Beresten, S K Degtyarev, L L Kisselev
PMCID: PMC328043  PMID: 503841

Abstract

Limited proteolysis of tryptophanyl-tRNA synthetase was used to detect changes in the enzyme molecule in the presence of substrates. Trypsinolysis of each of the two identical subunits occurs in succession from the N-terminus as follows: 60 leads to 51 leads to 40 leads to 24 kilodaltons. The transition 51 leads to 40 is hindered in tryptophanyl adenylate.enzyme complex. Yeast tRNATrp accelerates the first steps of hydrolysis and decelerates the transition 40 leads to 24. Once tRNATrp is added to the synthetase.adenylate complex, the protective effect of the adenylate disappears. The same effects are found also in the presence of tRNATrp oxidized with NaI04 and tRNATrp lacking the 3'-terminal adenosine. Oxidized tRNATrp (but not tRNATrp without the 3'-A) accelerates tryptophan-dependent hydrolysis of ATP catalyzed by the enzyme. A scheme is proposed for the interaction of yeast tRNATrp with beef pancreas tryptophanyl-tRNA synthetase involving the association of tRNA with a positively charged site(s) of the enzyme and the changes in the conformation of enzyme manifesting itself in unfolding of the acidic N-terminal fragment of the polypeptide chain and in the exposure of the adenylate.

Full text

PDF
625

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhverdyan V. Z., Kisselev L. L. Affinity labelling of tryptophanyl-transfer RNA synthetase. J Mol Biol. 1977 Jul 5;113(3):475–501. doi: 10.1016/0022-2836(77)90234-0. [DOI] [PubMed] [Google Scholar]
  2. Dorizzi M., Labouesse B., Labouesse J. Isolation and stoichiometry of beef pancreas tryptophanyl-tRNA synthetase complexes with tryptophan and tryptophanyladenylate. Eur J Biochem. 1971 Apr 30;19(4):563–572. doi: 10.1111/j.1432-1033.1971.tb01350.x. [DOI] [PubMed] [Google Scholar]
  3. Epely S., Gros C., Labouesse J., Lemaire G. Limited proteolysis of tryptophanyl-tRNA synthetase from beef pancreas. Eur J Biochem. 1976 Jan 2;61(1):139–146. doi: 10.1111/j.1432-1033.1976.tb10004.x. [DOI] [PubMed] [Google Scholar]
  4. Favorova O. O., Khochkina L. L., Shaigo M., Parin A. V., Khil'ko S. H., Prasolov V. S., Kiselev L. L. Triptofanil-tRNK-sintetaza. Vydelenie i kharakteristika dvukh form fermenta. Mol Biol. 1974 Sep-Oct;8(5):729–740. [PubMed] [Google Scholar]
  5. Gros C., Lemaire G., Van Rapenbusch R., Labouesse B. The subunit structure of tryptophanyl transfer ribonucleic acid synthetase from beef pancreas. J Biol Chem. 1972 May 10;247(9):2931–2943. [PubMed] [Google Scholar]
  6. Kisselev L. L., Favorova O. O. Aminoacyl-tRNA synthetases: sone recent results and achievements. Adv Enzymol Relat Areas Mol Biol. 1974;40(0):141–238. doi: 10.1002/9780470122853.ch5. [DOI] [PubMed] [Google Scholar]
  7. Krauss G., Coutts S. M., Riesner D., Maass G. Mechanism of tRNA-aminoacyl-tRNA synthetase recognition: influence of aminoalkyladenylates. Biochemistry. 1978 Jun 13;17(12):2443–2449. doi: 10.1021/bi00605a031. [DOI] [PubMed] [Google Scholar]
  8. Krauss G., Riesner D., Maass G. Mechanism of tRNA-synthetase recognition: role of terminal A. Nucleic Acids Res. 1977 Jul;4(7):2253–2262. doi: 10.1093/nar/4.7.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Markus G., Barnard E. A., Castellani B. A., Saunders D. Ligand-induced conformational changes in ribonuclease. J Biol Chem. 1968 Aug 10;243(15):4070–4076. [PubMed] [Google Scholar]
  10. NEU H. C., HEPPEL L. A. NUCLEOTIDE SEQUENCE ANALYSIS OF POLYRIBONUCLEOTIDES BY MEANS OF PERIODATE OXIDATION FOLLOWED BY CLEAVAGE WITH AN AMINE. J Biol Chem. 1964 Sep;239:2927–2934. [PubMed] [Google Scholar]
  11. Nishikata M., Kasai K. I., Ishii S. I. Affinity chromatography of trypsin and related enzymes. IV. Quantitative comparison of affinity adsorbents containing various arginine peptides. J Biochem. 1977 Nov;82(5):1475–1484. doi: 10.1093/oxfordjournals.jbchem.a131837. [DOI] [PubMed] [Google Scholar]
  12. Prasolov V. S., Favorova O. O., Margulis G. V., Kisselev L. L. Limited proteolysis of the tryptophanyl-tRNA synthetase. Biochim Biophys Acta. 1975 Jan 6;378(1):92–106. doi: 10.1016/0005-2787(75)90140-9. [DOI] [PubMed] [Google Scholar]
  13. Vlassov V. V., Tchizhikov V. E., Scheinker V. S., Favorova O. O. Alkylation of tRNATrp in a complex with tryptophanyl-tRNA synthetase. FEBS Lett. 1978 Jun 1;90(1):103–106. doi: 10.1016/0014-5793(78)80307-x. [DOI] [PubMed] [Google Scholar]
  14. Von Der Haar F., Gaertner E. Phenylalanyl-tRNA synthetase from baker's yeast: role of 3'-terminal adenosine of tRNA-Phe in enzyme-substrate interaction studied with 3'-modified tRNA-Phe species. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1378–1382. doi: 10.1073/pnas.72.4.1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES