Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Jun 25;19(12):3301–3305. doi: 10.1093/nar/19.12.3301

Enzymatic multiplex DNA sequencing.

M Chee 1
PMCID: PMC328326  PMID: 2062645

Abstract

The problem of reading DNA sequence films has been reformulated using an easily implemented, multiplex version of enzymatic DNA sequencing. By utilizing a uniquely tagged primer for each base-specific sequencing reaction, the four reactions can be pooled and electrophoresed in a single lane. This approach has been previously proposed for use with fluorescently labelled probes (1), and is analogous to the principle used in four-dye fluorescence sequencing except that the signals are resolved following electrophoresis (2). After transfer to a nylon membrane, images are obtained separately for each of the four reactions by hybridization using oligonucleotide probes. The images can then be superimposed to reconstitute a complete sequence pattern. In this way the correction of gel distortion effects and accurate band registration are considerably simplified, as each of the four base-specific ladders require very similar corrections. The methods therefore provide the basis for a second generation of more accurate and reliable film reading programs, as well as being useful for conventional multiplex sequencing. Unlike the original multiplex protocol (3), the approach described is suitable for small projects, as multiple cloning vectors are not used. Although more than one vector can be utilized, only a library of fragments cloned into any single phage, phagemid or plasmid vector is actually required, together with a set of tagged oligonucleotide primers.

Full text

PDF
3301

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. doi: 10.1038/310207a0. [DOI] [PubMed] [Google Scholar]
  2. Bankier A. T., Weston K. M., Barrell B. G. Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol. 1987;155:51–93. doi: 10.1016/0076-6879(87)55009-1. [DOI] [PubMed] [Google Scholar]
  3. Beck S., O'Keeffe T., Coull J. M., Köster H. Chemiluminescent detection of DNA: application for DNA sequencing and hybridization. Nucleic Acids Res. 1989 Jul 11;17(13):5115–5123. doi: 10.1093/nar/17.13.5115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A., 3rd, Kouzarides T., Martignetti J. A. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol. 1990;154:125–169. doi: 10.1007/978-3-642-74980-3_6. [DOI] [PubMed] [Google Scholar]
  5. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Church G. M., Kieffer-Higgins S. Multiplex DNA sequencing. Science. 1988 Apr 8;240(4849):185–188. doi: 10.1126/science.3353714. [DOI] [PubMed] [Google Scholar]
  7. Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus. J Gen Virol. 1986 Sep;67(Pt 9):1759–1816. doi: 10.1099/0022-1317-67-9-1759. [DOI] [PubMed] [Google Scholar]
  8. Elder J. K., Green D. K., Southern E. M. Automatic reading of DNA sequencing gel autoradiographs using a large format digital scanner. Nucleic Acids Res. 1986 Jan 10;14(1):417–424. doi: 10.1093/nar/14.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eperon I. C. Rapid preparation of bacteriophage DNA for sequence analysis in sets of 96 clones, using filtration. Anal Biochem. 1986 Aug 1;156(2):406–412. doi: 10.1016/0003-2697(86)90273-3. [DOI] [PubMed] [Google Scholar]
  10. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. The complete DNA sequence of vaccinia virus. Virology. 1990 Nov;179(1):247-66, 517-63. doi: 10.1016/0042-6822(90)90294-2. [DOI] [PubMed] [Google Scholar]
  11. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
  12. Jacobson K. B., Arlinghaus H. F., Schmitt H. W., Sachleben R. A., Brown G. M., Thonnard N., Sloop F. V., Foote R. S., Larimer F. W., Woychik R. P. An approach to the use of stable isotopes for DNA sequencing. Genomics. 1991 Jan;9(1):51–59. doi: 10.1016/0888-7543(91)90220-9. [DOI] [PubMed] [Google Scholar]
  13. Komaromy M., Govan H. An inexpensive semi-automated sequence reader for the Apple II computer. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):675–678. doi: 10.1093/nar/12.1part2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. 1988 Jul;69(Pt 7):1531–1574. doi: 10.1099/0022-1317-69-7-1531. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith L. M., Sanders J. Z., Kaiser R. J., Hughes P., Dodd C., Connell C. R., Heiner C., Kent S. B., Hood L. E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986 Jun 12;321(6071):674–679. doi: 10.1038/321674a0. [DOI] [PubMed] [Google Scholar]
  20. Smith V., Brown C. M., Bankier A. T., Barrell B. G. Semiautomated preparation of DNA templates for large-scale sequencing projects. DNA Seq. 1990;1(1):73–78. doi: 10.3109/10425179009041349. [DOI] [PubMed] [Google Scholar]
  21. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  22. Staden R. A computer program to enter DNA gel reading data into a computer. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):499–503. doi: 10.1093/nar/12.1part2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tizard R., Cate R. L., Ramachandran K. L., Wysk M., Voyta J. C., Murphy O. J., Bronstein I. Imaging of DNA sequences with chemiluminescence. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4514–4518. doi: 10.1073/pnas.87.12.4514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  25. Watson J. D. The human genome project: past, present, and future. Science. 1990 Apr 6;248(4951):44–49. doi: 10.1126/science.2181665. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES