Abstract
We have established a sensitive, monoclonal antibody (Mab)-based procedure permitting the selective enrichment of sequences containing the miscoding alkylation product O6-ethylguanine (O6-EtGua) from mammalian DNA. H5 rat hepatoma cells were reacted with the N-nitroso carcinogen N-ethyl-N-nitrosourea in vitro, to give overall levels of greater than or equal to 25 O6-EtGua residues per diploid genome (corresponding to O6-EtGua/guanine molar ratios of greater than or equal to 10(-8). For analysis, enzymatically restricted DNA from these cells is incubated with an antibody specific for O6-ethyl-2'-deoxyguanosine, the resulting Mab-DNA complexes are separated from (O6-EtGua)-free fragments by filtration through a nitrocellulose (NC) membrane, and the DNA is recovered from the filter-bound complexes quantitatively. The efficiency of Mab binding to DNA fragments containing O6-EtGua is constant over a range of O6-EtGua/guanine molar ratios between 10(-5) and 10(-8). (O6-EtGua)-containing restriction fragments encompassing known gene sequences (e.g., the immunoglobulin E heavy chain gene of H5 rat hepatoma cells used as a model in this study) are subsequently amplified by PCR and quantified by slot-blot hybridisation. The content and distribution of a specific carcinogen-DNA adduct in defined sequences of genomic DNA can thus be analyzed as well as the kinetics of intragenomic (toposelective) repair of any DNA lesion for which a suitable Mab is available.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamkiewicz J., Eberle G., Huh N., Nehls P., Rajewsky M. F. Quantitation and visualization of alkyl deoxynucleosides in the DNA of mammalian cells by monoclonal antibodies. Environ Health Perspect. 1985 Oct;62:49–55. doi: 10.1289/ehp.856249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohr V. A. DNA repair at the level of the gene: molecular and clinical considerations. J Cancer Res Clin Oncol. 1990;116(4):384–391. doi: 10.1007/BF01612922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
- Deschatrette J., Moore E. E., Dubois M., Cassio D., Weiss M. C. Dedifferentiated variants of a rat hepatoma: analysis by cell hybridization. Somatic Cell Genet. 1979 Nov;5(6):697–718. doi: 10.1007/BF01542636. [DOI] [PubMed] [Google Scholar]
- Doniger J., Day R. S., DiPaolo J. A. Quantitative assessment of the role of O6-methylguanine in the initiation of carcinogenesis by methylating agents. Proc Natl Acad Sci U S A. 1985 Jan;82(2):421–425. doi: 10.1073/pnas.82.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glickman B. W., Horsfall M. J., Gordon A. J., Burns P. A. Nearest neighbor affects G:C to A:T transitions induced by alkylating agents. Environ Health Perspect. 1987 Dec;76:29–32. doi: 10.1289/ehp.877629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horsfall M. J., Gordon A. J., Burns P. A., Zielenska M., van der Vliet G. M., Glickman B. W. Mutational specificity of alkylating agents and the influence of DNA repair. Environ Mol Mutagen. 1990;15(2):107–122. doi: 10.1002/em.2850150208. [DOI] [PubMed] [Google Scholar]
- Huh N., Rajewsky M. F. Enzymatic elimination of O6-ethylguanine and stability of O4-ethylthymine in the DNA of malignant neural cell lines exposed to N-ethyl-N-nitrosourea in culture. Carcinogenesis. 1986 Mar;7(3):435–439. doi: 10.1093/carcin/7.3.435. [DOI] [PubMed] [Google Scholar]
- LeDoux S. P., Patton N. J., Nelson J. W., Bohr W. A., Wilson G. L. Preferential DNA repair of alkali-labile sites within the active insulin gene. J Biol Chem. 1990 Sep 5;265(25):14875–14880. [PubMed] [Google Scholar]
- Leadon S. A. Differential repair of DNA damage in specific nucleotide sequences in monkey cells. Nucleic Acids Res. 1986 Nov 25;14(22):8979–8995. doi: 10.1093/nar/14.22.8979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madhani H. D., Bohr V. A., Hanawalt P. C. Differential DNA repair in transcriptionally active and inactive proto-oncogenes: c-abl and c-mos. Cell. 1986 May 9;45(3):417–423. doi: 10.1016/0092-8674(86)90327-2. [DOI] [PubMed] [Google Scholar]
- Mellon I., Bohr V. A., Smith C. A., Hanawalt P. C. Preferential DNA repair of an active gene in human cells. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8878–8882. doi: 10.1073/pnas.83.23.8878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellon I., Hanawalt P. C. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature. 1989 Nov 2;342(6245):95–98. doi: 10.1038/342095a0. [DOI] [PubMed] [Google Scholar]
- Mellon I., Spivak G., Hanawalt P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987 Oct 23;51(2):241–249. doi: 10.1016/0092-8674(87)90151-6. [DOI] [PubMed] [Google Scholar]
- Milligan J. R., Archer M. C. Alkylation of individual genes in rat liver by the carcinogen N-nitrosodimethylamine. Biochem Biophys Res Commun. 1988 Aug 30;155(1):14–17. doi: 10.1016/s0006-291x(88)81042-8. [DOI] [PubMed] [Google Scholar]
- Mulligan R. C., Berg P. Expression of a bacterial gene in mammalian cells. Science. 1980 Sep 19;209(4463):1422–1427. doi: 10.1126/science.6251549. [DOI] [PubMed] [Google Scholar]
- Müller R., Rajewsky M. F. Immunological quantification by high-affinity antibodies of O6-ethyldeoxyguanosine in DNA exposed to N-ethyl-N-nitrosourea. Cancer Res. 1980 Mar;40(3):887–896. [PubMed] [Google Scholar]
- Nehls P., Adamkiewicz J., Rajewsky M. F. Immuno-slot-blot: a highly sensitive immunoassay for the quantitation of carcinogen-modified nucleosides in DNA. J Cancer Res Clin Oncol. 1984;108(1):23–29. doi: 10.1007/BF00390969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nehls P., Rajewsky M. F. Monoclonal antibody-based immunoassay for the determination of cellular enzymatic activity for repair of specific carcinogen-DNA adducts (O6-alkylguanine). Carcinogenesis. 1990 Jan;11(1):81–87. doi: 10.1093/carcin/11.1.81. [DOI] [PubMed] [Google Scholar]
- Nehls P., Rajewsky M. F., Spiess E., Werner D. Highly sensitive sites for guanine-O6 ethylation in rat brain DNA exposed to N-ethyl-N-nitrosourea in vivo. EMBO J. 1984 Feb;3(2):327–332. doi: 10.1002/j.1460-2075.1984.tb01806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nose K., Nikaido O. Transcriptionally active and inactive genes are similarly modified by chemical carcinogens or X-ray in normal human fibroblasts. Biochim Biophys Acta. 1984 Apr 5;781(3):273–278. doi: 10.1016/0167-4781(84)90093-9. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Methylation of the O6 position of guanine in DNA is the most likely initiating event in carcinogenesis by methylating agents. Cancer Invest. 1984;2(3):223–231. doi: 10.3109/07357908409104376. [DOI] [PubMed] [Google Scholar]
- Poirier M. C., Fullerton N. F., Patterson E. D., Beland F. A. DNA adduct formation and removal in hepatic chromatin fractions from rats chronically fed 2-acetylaminofluorene. Carcinogenesis. 1990 Aug;11(8):1343–1347. doi: 10.1093/carcin/11.8.1343. [DOI] [PubMed] [Google Scholar]
- Richardson K. K., Fostel J., Skopek T. R. Nucleotide sequence of the xanthine guanine phosphoribosyl transferase gene of E. coli. Nucleic Acids Res. 1983 Dec 20;11(24):8809–8816. doi: 10.1093/nar/11.24.8809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan A. J., Billett M. A., O'Connor P. J. Selective repair of methylated purines in regions of chromatin DNA. Carcinogenesis. 1986 Sep;7(9):1497–1503. doi: 10.1093/carcin/7.9.1497. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- Samson L., Thomale J., Rajewsky M. F. Alternative pathways for the in vivo repair of O6-alkylguanine and O4-alkylthymine in Escherichia coli: the adaptive response and nucleotide excision repair. EMBO J. 1988 Jul;7(7):2261–2267. doi: 10.1002/j.1460-2075.1988.tb03066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scicchitano D. A., Hanawalt P. C. Repair of N-methylpurines in specific DNA sequences in Chinese hamster ovary cells: absence of strand specificity in the dihydrofolate reductase gene. Proc Natl Acad Sci U S A. 1989 May;86(9):3050–3054. doi: 10.1073/pnas.86.9.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steen M. L., Hellman L., Pettersson U. Rat immunoglobulin E heavy chain locus. J Mol Biol. 1984 Jul 25;177(1):19–32. doi: 10.1016/0022-2836(84)90055-x. [DOI] [PubMed] [Google Scholar]
- Thomale J., Huh N. H., Nehls P., Eberle G., Rajewsky M. F. Repair of O6-ethylguanine in DNA protects rat 208F cells from tumorigenic conversion by N-ethyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9883–9887. doi: 10.1073/pnas.87.24.9883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Topal M. D., Eadie J. S., Conrad M. O6-methylguanine mutation and repair is nonuniform. Selection for DNA most interactive with O6-methylguanine. J Biol Chem. 1986 Jul 25;261(21):9879–9885. [PubMed] [Google Scholar]
- Wilson V. L., Basu A. K., Essigmann J. M., Smith R. A., Harris C. C. O6-alkyldeoxyguanosine detection by 32P-postlabeling and nucleotide chromatographic analysis. Cancer Res. 1988 Apr 15;48(8):2156–2161. [PubMed] [Google Scholar]
- Zarbl H., Sukumar S., Arthur A. V., Martin-Zanca D., Barbacid M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. 1985 May 30-Jun 5Nature. 315(6018):382–385. doi: 10.1038/315382a0. [DOI] [PubMed] [Google Scholar]
