Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Aug 25;19(16):4537–4541. doi: 10.1093/nar/19.16.4537

Structure of the human gene for monoamine oxidase type A.

Z Y Chen 1, G S Hotamisligil 1, J K Huang 1, L Wen 1, D Ezzeddine 1, N Aydin-Muderrisoglu 1, J F Powell 1, R H Huang 1, X O Breakefield 1, I Craig 1
PMCID: PMC328646  PMID: 1886775

Abstract

Monoamine oxidases, type A and type B, are principal enzymes for the degradation of biogenic amines, including catecholamines and serotonin. These isozymes have been implicated in neuropsychiatric disorders. Previously, cDNA clones for both MAO-A and MAO-B have been sequenced and the genes encoding them have been localized to human chromosome Xp11.23-Xp11.4. In this work, we isolated human genomic clones spanning almost all the MAOA gene from cosmid and phage libraries using a cDNA probe for MAO-A. Restriction mapping and sequencing show that the human MAOA gene extends over 70 kb and is composed of 15 exons. The exon structure of human MAOA is similar to that described by others for human MAOB. Exon 12 (bearing the codon for cysteine, which carries the covalently bound FAD cofactor) and exon 13 are highly conserved between human MAOA and MAOB genes (92% at the amino acid level). Earlier work revealed two species of MAO-A mRNA, 2.1 kb and 4.5-5.5 kb. We now report on further cDNA isolation and sequencing, which demonstrates that the longer message has an extension of 2.2 kb in the 3' noncoding region. This extended region is contained entirely within exon 15. The two messages therefore appear to be generated by the use of two alternative polyadenylation sites. Results from the present work should facilitate the mutational analysis of functional domains of MAO-A and MAO-B. Knowledge of the gene structure will also help in evaluating the role of genetic variations in MAO-A in human disease through the use of genomic DNA, which is more accessible than the RNA, as a template for PCR-amplification and sequencing.

Full text

PDF
4537

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach A. W., Lan N. C., Johnson D. L., Abell C. W., Bembenek M. E., Kwan S. W., Seeburg P. H., Shih J. C. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4934–4938. doi: 10.1073/pnas.85.13.4934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bates P. Double cos site vectors: simplified cosmid cloning. Methods Enzymol. 1987;153:82–94. doi: 10.1016/0076-6879(87)53049-x. [DOI] [PubMed] [Google Scholar]
  3. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black G. C., Chen Z. Y., Craig I. W., Powell J. F. Dinucleotide repeat polymorphism at the MAOA locus. Nucleic Acids Res. 1991 Feb 11;19(3):689–689. doi: 10.1093/nar/19.3.689-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breakefield X. O., Giller E. L., Jr, Nurnberger J. I., Jr, Castiglione C. M., Buchsbaum M. S., Gershon E. S. Monoamine oxidase type A in fibroblasts from patients with bipolar depressive illness. Psychiatry Res. 1980 Jul;2(3):307–314. doi: 10.1016/0165-1781(80)90022-0. [DOI] [PubMed] [Google Scholar]
  6. Brown C. J., Willard H. F. Localization of a gene that escapes inactivation to the X chromosome proximal short arm: implications for X inactivation. Am J Hum Genet. 1990 Feb;46(2):273–279. [PMC free article] [PubMed] [Google Scholar]
  7. Castro Costa M. R., Edelstein S. B., Castiglione C. M., Chao H., Breakefield X. O. Properties of monoamine oxidase in control and Lesch-Nyhan fibroblasts. Biochem Genet. 1980 Jun;18(5-6):577–590. doi: 10.1007/BF00484403. [DOI] [PubMed] [Google Scholar]
  8. Donnai D., Mountford R. C., Read A. P. Norrie disease resulting from a gene deletion: clinical features and DNA studies. J Med Genet. 1988 Feb;25(2):73–78. doi: 10.1136/jmg.25.2.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dretzen G., Bellard M., Sassone-Corsi P., Chambon P. A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem. 1981 Apr;112(2):295–298. doi: 10.1016/0003-2697(81)90296-7. [DOI] [PubMed] [Google Scholar]
  10. Evans G. A., Wahl G. M. Cosmid vectors for genomic walking and rapid restriction mapping. Methods Enzymol. 1987;152:604–610. doi: 10.1016/0076-6879(87)52068-7. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  12. Gal A., Wieringa B., Smeets D. F., Bleeker-Wagemakers L., Ropers H. H. Submicroscopic interstitial deletion of the X chromosome explains a complex genetic syndrome dominated by Norrie disease. Cytogenet Cell Genet. 1986;42(4):219–224. doi: 10.1159/000132282. [DOI] [PubMed] [Google Scholar]
  13. Glover V., Sandler M. Clinical chemistry of monoamine oxidase. Cell Biochem Funct. 1986 Apr;4(2):89–97. doi: 10.1002/cbf.290040203. [DOI] [PubMed] [Google Scholar]
  14. Gorman K. B., Steinberg R. A. Simplified method for selective amplification and direct sequencing of cDNAs. Biotechniques. 1989 Apr;7(4):326-8, 331. [PubMed] [Google Scholar]
  15. Grimsby J., Chen K., Wang L. J., Lan N. C., Shih J. C. Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3637–3641. doi: 10.1073/pnas.88.9.3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hsu Y. P., Powell J. F., Sims K. B., Breakefield X. O. Molecular genetics of the monoamine oxidases. J Neurochem. 1989 Jul;53(1):12–18. doi: 10.1111/j.1471-4159.1989.tb07289.x. [DOI] [PubMed] [Google Scholar]
  17. Hsu Y. P., Weyler W., Chen S., Sims K. B., Rinehart W. B., Utterback M. C., Powell J. F., Breakefield X. O. Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences. J Neurochem. 1988 Oct;51(4):1321–1324. doi: 10.1111/j.1471-4159.1988.tb03105.x. [DOI] [PubMed] [Google Scholar]
  18. Ito A., Kuwahara T., Inadome S., Sagara Y. Molecular cloning of a cDNA for rat liver monoamine oxidase B. Biochem Biophys Res Commun. 1988 Dec 30;157(3):970–976. doi: 10.1016/s0006-291x(88)80969-0. [DOI] [PubMed] [Google Scholar]
  19. Kochersperger L. M., Parker E. L., Siciliano M., Darlington G. J., Denney R. M. Assignment of genes for human monoamine oxidases A and B to the X chromosome. J Neurosci Res. 1986;16(4):601–616. doi: 10.1002/jnr.490160403. [DOI] [PubMed] [Google Scholar]
  20. Lan N. C., Heinzmann C., Gal A., Klisak I., Orth U., Lai E., Grimsby J., Sparkes R. S., Mohandas T., Shih J. C. Human monoamine oxidase A and B genes map to Xp 11.23 and are deleted in a patient with Norrie disease. Genomics. 1989 May;4(4):552–559. doi: 10.1016/0888-7543(89)90279-6. [DOI] [PubMed] [Google Scholar]
  21. Levy E. R., Powell J. F., Buckle V. J., Hsu Y. P., Breakefield X. O., Craig I. W. Localization of human monoamine oxidase-A gene to Xp11.23-11.4 by in situ hybridization: implications for Norrie disease. Genomics. 1989 Aug;5(2):368–370. doi: 10.1016/0888-7543(89)90072-4. [DOI] [PubMed] [Google Scholar]
  22. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  23. Murphy D. L., Garrick N. A., Aulakh C. S., Cohen R. M. New contributions from basic science to understanding the effects of monoamine oxidase inhibiting antidepressants. J Clin Psychiatry. 1984 Jul;45(7 Pt 2):37–43. [PubMed] [Google Scholar]
  24. Murphy D. L. Substrate-selective monoamine oxidases--inhibitor, tissue, species and functional differences. Biochem Pharmacol. 1978;27(15):1889–1893. doi: 10.1016/0006-2952(78)90001-1. [DOI] [PubMed] [Google Scholar]
  25. Nicotra A., Senatori O. Occurrence of type A and type B monoamine oxidase activities in toad egg mitochondria. Comp Biochem Physiol C. 1984;78(2):353–356. doi: 10.1016/0742-8413(84)90097-5. [DOI] [PubMed] [Google Scholar]
  26. O'Brien S. J., Graves J. A. Report of the committee on comparative gene mapping. Cytogenet Cell Genet. 1990;55(1-4):406–433. doi: 10.1159/000133025. [DOI] [PubMed] [Google Scholar]
  27. Ozelius L., Gusella J. F., Breakefield X. O. MspI RFLP for human MAOA gene. Nucleic Acids Res. 1989 Dec 25;17(24):10516–10516. doi: 10.1093/nar/17.24.10516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ozelius L., Hsu Y. P., Bruns G., Powell J. F., Chen S., Weyler W., Utterback M., Zucker D., Haines J., Trofatter J. A. Human monoamine oxidase gene (MAOA): chromosome position (Xp21-p11) and DNA polymorphism. Genomics. 1988 Jul;3(1):53–58. doi: 10.1016/0888-7543(88)90159-0. [DOI] [PubMed] [Google Scholar]
  29. Pintar J. E., Barbosa J., Francke U., Castiglione C. M., Hawkins M., Jr, Breakefield X. O. Gene for monoamine oxidase type A assigned to the human X chromosome. J Neurosci. 1981 Feb;1(2):166–175. doi: 10.1523/JNEUROSCI.01-02-00166.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Powell J. F., Hsu Y. P., Weyler W., Chen S. A., Salach J., Andrikopoulos K., Mallet J., Breakefield X. O. The primary structure of bovine monoamine oxidase type A. Comparison with peptide sequences of bovine monoamine oxidase type B and other flavoenzymes. Biochem J. 1989 Apr 15;259(2):407–413. doi: 10.1042/bj2590407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  32. Samson J. A., Gudeman J. E., Schatzberg A. F., Kizuka P. P., Orsulak P. J., Cole J. O., Schildkraut J. J. Toward a biochemical classification of depressive disorders--VIII. Platelet monoamine oxidase activity in subtypes of depressions. J Psychiatr Res. 1985;19(4):547–555. doi: 10.1016/0022-3956(85)90072-x. [DOI] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sims K. B., de la Chapelle A., Norio R., Sankila E. M., Hsu Y. P., Rinehart W. B., Corey T. J., Ozelius L., Powell J. F., Bruns G. Monoamine oxidase deficiency in males with an X chromosome deletion. Neuron. 1989 Jan;2(1):1069–1076. doi: 10.1016/0896-6273(89)90231-6. [DOI] [PubMed] [Google Scholar]
  35. Singer T. P., Castagnoli N., Jr, Ramsay R. R., Trevor A. J. Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem. 1987 Jul;49(1):1–8. doi: 10.1111/j.1471-4159.1987.tb03384.x. [DOI] [PubMed] [Google Scholar]
  36. Sullivan J. L., Baenziger J. C., Wagner D. L., Rauscher F. P., Nurnberger J. I., Jr, Holmes J. S. Platelet MAO in subtypes of alcoholism. Biol Psychiatry. 1990 Apr 15;27(8):911–922. doi: 10.1016/0006-3223(90)90473-f. [DOI] [PubMed] [Google Scholar]
  37. Tabakoff B., Hoffman P. L., Lee J. M., Saito T., Willard B., De Leon-Jones F. Differences in platelet enzyme activity between alcoholics and nonalcoholics. N Engl J Med. 1988 Jan 21;318(3):134–139. doi: 10.1056/NEJM198801213180302. [DOI] [PubMed] [Google Scholar]
  38. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tetrud J. W., Langston J. W. The effect of deprenyl (selegiline) on the natural history of Parkinson's disease. Science. 1989 Aug 4;245(4917):519–522. doi: 10.1126/science.2502843. [DOI] [PubMed] [Google Scholar]
  40. Toneguzzo F., Glynn S., Levi E., Mjolsness S., Hayday A. Use of a chemically modified T7 DNA polymerase for manual and automated sequencing of supercoiled DNA. Biotechniques. 1988 May;6(5):460–469. [PubMed] [Google Scholar]
  41. Weyler W., Hsu Y. P., Breakefield X. O. Biochemistry and genetics of monoamine oxidase. Pharmacol Ther. 1990;47(3):391–417. doi: 10.1016/0163-7258(90)90064-9. [DOI] [PubMed] [Google Scholar]
  42. Winship P. R. An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res. 1989 Feb 11;17(3):1266–1266. doi: 10.1093/nar/17.3.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  44. Zureick J. L., Meltzer H. Y. Platelet MAO activity in hallucinating and paranoid schizophrenics: a review and meta-analysis. Biol Psychiatry. 1988 May;24(1):63–78. doi: 10.1016/0006-3223(88)90122-9. [DOI] [PubMed] [Google Scholar]
  45. de la Chapelle A., Sankila E. M., Lindlöf M., Aula P., Norio R. Norrie disease caused by a gene deletion allowing carrier detection and prenatal diagnosis. Clin Genet. 1985 Oct;28(4):317–320. doi: 10.1111/j.1399-0004.1985.tb00405.x. [DOI] [PubMed] [Google Scholar]
  46. von Knorring L., Perris C., Oreland L., Eisemann M., Holmgren S., Perris H. Morbidity risk for psychiatric disorders in families of probands with affective disorders divided according to levels of platelet MAO activity. Psychiatry Res. 1985 Aug;15(4):271–279. doi: 10.1016/0165-1781(85)90064-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES