Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Oct 11;19(19):5125–5130. doi: 10.1093/nar/19.19.5125

Construction of a novel RNA-transcript-trimming plasmid which can be used both in vitro in place of run-off and (G)-free transcriptions and in vivo as multi-sequences transcription vectors.

K Taira 1, K Nakagawa 1, S Nishikawa 1, K Furukawa 1
PMCID: PMC328865  PMID: 1923797

Abstract

We have constructed a new transcription system that allows trimming of both 5' and 3'-termini of any RNA transcripts by means of cis-acting ribozyme activities. The vector consists of a promoter, '5' Processing Ribozyme', any DNA template to be transcribed, and '3' Processing Ribozyme' sequences. When the vector possessing T7 promoter was tested in vitro, the transcription efficiency from the circular template was over ten-fold higher than using linearized template (run-off transcription). Further, since uniform RNAs with defined 5'- and 3'-ends can be produced, this strategy complements the conventional run-off transcription. Also the 5'-/3'-trimmed uniform RNA can function as a reporter in elucidating transcription factors and promoter regions in vitro, this strategy can replace the widely used (G)-free transcription (Sawadogo and Roeder (1985) Proc. Natl. Acad. Sci. USA 82, 4394-4398). With this strategy, in addition to the advantage that the template DNA need not be linearized prior to transcription, a cytidine-minus sequence is no longer necessary for quantitative analysis of transcription factors. Since any sequences including those of RNA virus can be inserted between the '5' Processing Ribozyme' and the '3' Processing Ribozyme' sequences, and the entire unit can be inserted into any genes under active transcription, this construct is useful like that of Dzianott and Bujarski ((1989) Proc. Natl. Acad. Sci. USA 86, 4823-4827) for RNA virologists because these strategies provide RNA transcripts without heterologous sequences which may greatly diminish infectivity. Moreover, since the construct can also be used in vivo, multi-transcripts such as trans-acting ribozymes targeted to various sites would be produced by concatenating the entire units in tandem.

Full text

PDF
5125

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S. Ribonuclease P: an enzyme with a catalytic RNA subunit. Adv Enzymol Relat Areas Mol Biol. 1989;62:1–36. doi: 10.1002/9780470123089.ch1. [DOI] [PubMed] [Google Scholar]
  2. Cech T. R. RNA as an enzyme. Sci Am. 1986 Nov;255(5):64–75. doi: 10.1038/scientificamerican1186-64. [DOI] [PubMed] [Google Scholar]
  3. Cotten M., Birnstiel M. L. Ribozyme mediated destruction of RNA in vivo. EMBO J. 1989 Dec 1;8(12):3861–3866. doi: 10.1002/j.1460-2075.1989.tb08564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dzianott A. M., Bujarski J. J. Derivation of an infectious viral RNA by autolytic cleavage of in vitro transcribed viral cDNAs. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4823–4827. doi: 10.1073/pnas.86.13.4823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Forster A. C., Symons R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell. 1987 Apr 24;49(2):211–220. doi: 10.1016/0092-8674(87)90562-9. [DOI] [PubMed] [Google Scholar]
  6. Haseloff J., Gerlach W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988 Aug 18;334(6183):585–591. doi: 10.1038/334585a0. [DOI] [PubMed] [Google Scholar]
  7. Herschlag D., Cech T. R. DNA cleavage catalysed by the ribozyme from Tetrahymena. Nature. 1990 Mar 29;344(6265):405–409. doi: 10.1038/344405a0. [DOI] [PubMed] [Google Scholar]
  8. Joyce G. F. RNA evolution and the origins of life. Nature. 1989 Mar 16;338(6212):217–224. doi: 10.1038/338217a0. [DOI] [PubMed] [Google Scholar]
  9. Koizumi M., Iwai S., Ohtsuka E. Construction of a series of several self-cleaving RNA duplexes using synthetic 21-mers. FEBS Lett. 1988 Feb 15;228(2):228–230. doi: 10.1016/0014-5793(88)80004-8. [DOI] [PubMed] [Google Scholar]
  10. Ohme-Takagi M., Shinshi H., Oda M., Uchimaru T., Nishikawa S., Taira K. In vivo RNA transcript-releasing plasmid possessing a universal pseudo-terminator by means of artificial ribozymes. Nucleic Acids Symp Ser. 1990;(22):49–50. [PubMed] [Google Scholar]
  11. Robertson D. L., Joyce G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990 Mar 29;344(6265):467–468. doi: 10.1038/344467a0. [DOI] [PubMed] [Google Scholar]
  12. Rossi J. J., Cantin E. M., Zaia J. A., Ladne P. A., Chen J., Stephens D. A., Sarver N., Chang P. S. Ribozymes as therapies for AIDS. Ann N Y Acad Sci. 1990;616:184–200. doi: 10.1111/j.1749-6632.1990.tb17839.x. [DOI] [PubMed] [Google Scholar]
  13. Sarver N., Cantin E. M., Chang P. S., Zaia J. A., Ladne P. A., Stephens D. A., Rossi J. J. Ribozymes as potential anti-HIV-1 therapeutic agents. Science. 1990 Mar 9;247(4947):1222–1225. doi: 10.1126/science.2107573. [DOI] [PubMed] [Google Scholar]
  14. Sawadogo M., Roeder R. G. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4394–4398. doi: 10.1073/pnas.82.13.4394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Taira K., Oda M., Shinshi H., Maeda H., Furukawa K. Construction of a novel artificial-ribozyme-releasing plasmid. Protein Eng. 1990 Aug;3(8):733–737. doi: 10.1093/protein/3.8.733. [DOI] [PubMed] [Google Scholar]
  16. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  17. Yamazaki K., Katagiri F., Imaseki H., Chua N. H. TGA1a, a tobacco DNA-binding protein, increases the rate of preinitiation complex formation in a plant in vitro transcription system [corrected]. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7035–7039. doi: 10.1073/pnas.87.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES