Abstract
The dodecadeoxynucleotide duplex d-(GCATTAATGC)2 has been prepared with all adenine bases replaced by 2-NH2-adenine. This modified duplex has been characterized by nuclear magnetic resonance (NMR) spectroscopy. Complete sequence-specific 1H resonance assignments have been obtained by using a variety of 2D NMR methods. Multiple quantum-filtered and multiple quantum experiments have been used to completely assign all sugar ring protons, including 5'H and 5'H resonances. The assignments form the basis for a detailed comparative analysis of the 1H NMR parameters of the modified and parent duplex. The structural features of both decamer duplexes in solution are characteristic of the B-DNA family. The spin-spin coupling constants in the sugar rings and the relative spatial proximities of protons in the bases and sugars (as determined from the comparison of corresponding nuclear Overhauser effects) are virtually identical in the parent and modified duplexes. Thus, substitution by this adenine analogue in oligonucleotides appears not to disturb the global or local conformation of the DNA duplex.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Assa-Munt N., Kearns D. R. Poly(dA-dT) has a right-handed B conformation in solution: a two-dimensional NMR study. Biochemistry. 1984 Feb 28;23(5):791–796. doi: 10.1021/bi00300a001. [DOI] [PubMed] [Google Scholar]
- Borah B., Cohen J. S., Bax A. Conformation of double-stranded polydeoxynucleotides in solution by proton two-dimensional nuclear Overhauser enhancement spectroscopy. Biopolymers. 1985 May;24(5):747–765. doi: 10.1002/bip.360240503. [DOI] [PubMed] [Google Scholar]
- Borah B., Cohen J. S., Howard F. B., Miles H. T. Poly(d2NH2A-dT): two-dimensional NMR shows a B to A conversion in high salt. Biochemistry. 1985 Dec 3;24(25):7456–7462. doi: 10.1021/bi00346a064. [DOI] [PubMed] [Google Scholar]
- Chazin W. J., Wüthrich K., Hyberts S., Rance M., Denny W. A., Leupin W. 1H nuclear magnetic resonance assignments for d-(GCATTAATGC)2 using experimental refinements of established procedures. J Mol Biol. 1986 Aug 5;190(3):439–453. doi: 10.1016/0022-2836(86)90014-8. [DOI] [PubMed] [Google Scholar]
- Cheong C., Tinoco I., Jr, Chollet A. Thermodynamic studies of base pairing involving 2,6-diaminopurine. Nucleic Acids Res. 1988 Jun 10;16(11):5115–5122. doi: 10.1093/nar/16.11.5115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chollet A., Kawashima E. DNA containing the base analogue 2-aminoadenine: preparation, use as hybridization probes and cleavage by restriction endonucleases. Nucleic Acids Res. 1988 Jan 11;16(1):305–317. doi: 10.1093/nar/16.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coll M., Wang A. H., van der Marel G. A., van Boom J. H., Rich A. Crystal structure of a Z-DNA fragment containing thymine/2-aminoadenine base pairs. J Biomol Struct Dyn. 1986 Oct;4(2):157–172. doi: 10.1080/07391102.1986.10506337. [DOI] [PubMed] [Google Scholar]
- Flynn P. F., Kintanar A., Reid B. R., Drobny G. Coherence transfer in deoxyribose sugars produced by isotropic mixing: an improved intraresidue assignment strategy for the two-dimensional NMR spectra of DNA. Biochemistry. 1988 Feb 23;27(4):1191–1197. doi: 10.1021/bi00404a019. [DOI] [PubMed] [Google Scholar]
- Grütter R., Otting G., Wüthrich K., Leupin W. OR3 operator of bacteriophage lambda in a 23 base-pair DNA fragment: sequence-specific 1H NMR assignments for the non-labile protons and comparison with the isolated 17 base-pair operator. Eur Biophys J. 1988;16(5):279–286. doi: 10.1007/BF00254064. [DOI] [PubMed] [Google Scholar]
- Hoheisel J. D., Lehrach H. Quantitative measurements on the duplex stability of 2,6-diaminopurine and 5-chloro-uracil nucleotides using enzymatically synthesized oligomers. FEBS Lett. 1990 Nov 12;274(1-2):103–106. doi: 10.1016/0014-5793(90)81340-t. [DOI] [PubMed] [Google Scholar]
- Khudyakov I. Y., Kirnos M. D., Alexandrushkina N. I., Vanyushin B. F. Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine. Virology. 1978 Jul 1;88(1):8–18. doi: 10.1016/0042-6822(78)90104-6. [DOI] [PubMed] [Google Scholar]
- Kirnos M. D., Khudyakov I. Y., Alexandrushkina N. I., Vanyushin B. F. 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature. 1977 Nov 24;270(5635):369–370. doi: 10.1038/270369a0. [DOI] [PubMed] [Google Scholar]
- Lefèvre J. F., Lane A. N., Jardetzky O. Solution structure of the Trp operator of Escherichia coli determined by NMR. Biochemistry. 1987 Aug 11;26(16):5076–5090. doi: 10.1021/bi00390a029. [DOI] [PubMed] [Google Scholar]
- Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
- Mellema J. R., Pieters J. M., van der Marel G. A., van Boom J. H., Haasnoot C. A., Altona C. Sequence-dependent structural variation in single-helical DNA. Proton NMR studies of d(T-A-T-A) and d(A-T-A-T) in aqueous solution. Eur J Biochem. 1984 Sep 3;143(2):285–301. doi: 10.1111/j.1432-1033.1984.tb08371.x. [DOI] [PubMed] [Google Scholar]
- Rance M., Chazin W. J., Dalvit C., Wright P. E. Multiple-quantum nuclear magnetic resonance. Methods Enzymol. 1989;176:114–134. doi: 10.1016/0076-6879(89)76008-0. [DOI] [PubMed] [Google Scholar]
- Rance M., Dalvit C., Wright P. E. Simplification of 1H NMR spectra of proteins by one-dimensional multiple quantum filtration. Biochem Biophys Res Commun. 1985 Sep 30;131(3):1094–1102. doi: 10.1016/0006-291x(85)90203-7. [DOI] [PubMed] [Google Scholar]
- Rinkel L. J., Altona C. Conformational analysis of the deoxyribofuranose ring in DNA by means of sums of proton-proton coupling constants: a graphical method. J Biomol Struct Dyn. 1987 Feb;4(4):621–649. doi: 10.1080/07391102.1987.10507665. [DOI] [PubMed] [Google Scholar]
- Rinkel L. J., Mellema J. R., van der Marel G. A., van Boom J. H., Altona C. Influence of 2-aminoadenosine, A', on the conformational behaviour of d(T-A'-T-A'). A one-dimensional proton NMR study at 300 MHz and 500 MHz. Eur J Biochem. 1986 Jan 15;154(2):259–265. doi: 10.1111/j.1432-1033.1986.tb09391.x. [DOI] [PubMed] [Google Scholar]
- Shindo H., Okhubo S., Matsumoto U., Giessner-Prettre C., Zon G. Nuclear magnetic spectra of self complementary decanucleotides in solution; base sequence effect on the chemical shifts of nonexchangeable protons. J Biomol Struct Dyn. 1988 Feb;5(4):913–931. doi: 10.1080/07391102.1988.10506434. [DOI] [PubMed] [Google Scholar]
- Sági J., Ebinger K., Vorlicková M., Kypr J., Otvös L. Replication, transcription and nuclease digestion of the unusual X-DNA double helix of poly(amino2dA-dT). J Biomol Struct Dyn. 1990 Apr;7(5):1073–1082. doi: 10.1080/07391102.1990.10508547. [DOI] [PubMed] [Google Scholar]
- Sági J., Vorlícková M., Kypr J., Otvös L. Recognition and use of the unusual X-DNA as a primer-template by Klenow DNA polymerase enzyme. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1204–1212. doi: 10.1016/0006-291x(89)91370-3. [DOI] [PubMed] [Google Scholar]
- Vorlickova M., Sagi J., Szabolcs A., Szemzo A., Otvos L., Kypr J. Poly(amino2dA-dT) isomerizes into the unusual X-DNA double helix at physiological conditions inducing Z-DNA in poly (dG-methyl5dC). J Biomol Struct Dyn. 1988 Dec;6(3):503–510. doi: 10.1080/07391102.1988.10506503. [DOI] [PubMed] [Google Scholar]
- Vorlícková M., Sági J., Szabolcs A., Szemzö A., Otvös L., Kypr J. Conformation of the synthetic DNA poly(amino2dA-dT) duplex in high-salt and aqueous alcohol solutions. Nucleic Acids Res. 1988 Jan 11;16(1):279–289. doi: 10.1093/nar/16.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]