Abstract
A new approach has been devised for the synthesis of oligonucleotides containing 2'-deoxy-6-thioguanosine [d(s6G)]. The synthesis of oligonucleotides containing d(s6G) requires special protection and deprotection strategies to prevent the thione functionality from undergoing oxidation and hydrolysis. Previous attempted syntheses have neglected to address this problem. By using the cyanoethyl protecting group for the thione and phenoxyacetyl for the exocyclic amino group, it was possible to deprotect oligonucleotides with a mixture of sodium hydroxide and sodium hydrogen sulfide without any significant conversion of d(s6G) to deoxyguanosine. Application of this strategy will allow investigation of the structural as well as biological activity of d(s6G)-containing oligonucleotides.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amarnath V., Broom A. D. Polyribonucleotides containing thiopurines: synthesis and properties of poly (6-thioguanylic acid). Biochemistry. 1976 Oct 5;15(20):4386–4389. doi: 10.1021/bi00665a006. [DOI] [PubMed] [Google Scholar]
- Beikirch H. H., Lezius A. G. Double-stranded polydeoxyribonucleotides containing 6-thiodeoxyguanosine and 6-thiodeoxyinosine. Poly(d(A-C)-d(T-s 6 G)),poly(d(A-s 6 G)-d(T-C)) and poly(d(A-C)-d(T-s 6 I)). Eur J Biochem. 1972 May 23;27(2):381–387. doi: 10.1111/j.1432-1033.1972.tb01848.x. [DOI] [PubMed] [Google Scholar]
- Bugg C. E., Thewalt U. The crystal and molecular structure of 6-thioguanine. J Am Chem Soc. 1970 Dec 16;92(25):7441–7445. doi: 10.1021/ja00728a031. [DOI] [PubMed] [Google Scholar]
- Christie N. T., Drake S., Meyn R. E., Nelson J. A. 6-Thioguanine-induced DNA damage as a determinant of cytotoxicity in cultured Chinese hamster ovary cells. Cancer Res. 1984 Sep;44(9):3665–3671. [PubMed] [Google Scholar]
- Darlix J. L., Fromageot P., Reich E. Synthesis of ribonucleic acid containing 6-thioguanylic acid residues. Biochemistry. 1973 Feb 27;12(5):914–919. doi: 10.1021/bi00729a019. [DOI] [PubMed] [Google Scholar]
- Donohue J. On N-H--S hydrogen bonds. J Mol Biol. 1969 Oct 28;45(2):231–235. doi: 10.1016/0022-2836(69)90102-8. [DOI] [PubMed] [Google Scholar]
- Eadie J. S., McBride L. J., Efcavitch J. W., Hoff L. B., Cathcart R. High-performance liquid chromatographic analysis of oligodeoxyribonucleotide base composition. Anal Biochem. 1987 Sep;165(2):442–447. doi: 10.1016/0003-2697(87)90294-6. [DOI] [PubMed] [Google Scholar]
- Hare D. R., Wemmer D. E., Chou S. H., Drobny G., Reid B. R. Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-A-T-T-C-G-C-G) using two-dimensional nuclear magnetic resonance methods. J Mol Biol. 1983 Dec 15;171(3):319–336. doi: 10.1016/0022-2836(83)90096-7. [DOI] [PubMed] [Google Scholar]
- Kovach J. S., Rubin J., Creagan E. T., Schutt A. J., Kvols L. K., Svingen P. A., Hu T. C. Phase I trial of parenteral 6-thioguanine given on 5 consecutive days. Cancer Res. 1986 Nov;46(11):5959–5962. [PubMed] [Google Scholar]
- LEPAGE G. A., JONES M. Further studies on the mechanism of action of 6-thioguanine. Cancer Res. 1961 Dec;21:1590–1594. [PubMed] [Google Scholar]
- Lee S. H., Sartorelli A. C. The effects of inhibitors of DNA biosynthesis on the cytotoxicity of 6-thioguanine. Cancer Biochem Biophys. 1981;5(3):189–194. [PubMed] [Google Scholar]
- Nelson J. A., Carpenter J. W., Rose L. M., Adamson D. J. Mechanisms of action of 6-thioguanine, 6-mercaptopurine, and 8-azaguanine. Cancer Res. 1975 Oct;35(10):2872–2878. [PubMed] [Google Scholar]
- Ofengand J. The function of pseudouridylic acid in transfer ribonucleic acid. I. The specific cyanoethylation of pseudouridine, inosine, and 4-thiouridine by acrylonitrile. J Biol Chem. 1967 Nov 10;242(21):5034–5045. [PubMed] [Google Scholar]
- Rappaport H. P. The 6-thioguanine/5-methyl-2-pyrimidinone base pair. Nucleic Acids Res. 1988 Aug 11;16(15):7253–7267. doi: 10.1093/nar/16.15.7253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulhof J. C., Molko D., Teoule R. The final deprotection step in oligonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using labile base-protecting groups. Nucleic Acids Res. 1987 Jan 26;15(2):397–416. doi: 10.1093/nar/15.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu T., Ogilvie K. K., Pon R. T. Prevention of chain cleavage in the chemical synthesis of 2'-silylated oligoribonucleotides. Nucleic Acids Res. 1989 May 11;17(9):3501–3517. doi: 10.1093/nar/17.9.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida S., Yamada M., Masaki S., Saneyoshi M. Utilization of 2'-deoxy-6-thioguanosine 5'-triphosphate in DNA synthesis in vitro by DNA polymerase alpha from calf thymus. Cancer Res. 1979 Oct;39(10):3955–3958. [PubMed] [Google Scholar]