Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Oct 25;19(20):5749–5754. doi: 10.1093/nar/19.20.5749

A synthetic alanyl-initiator tRNA with initiator tRNA properties as determined by fluorescence measurements: comparison to a synthetic alanyl-elongator tRNA.

W L Picking 1, W D Picking 1, C H Ma 1, B Hardesty 1
PMCID: PMC328986  PMID: 1945852

Abstract

Two synthetic tRNAs have been generated that can be enzymatically aminoacylated with alanine and have AAA anticodons to recognize a poly(U) template. One of the tRNAs (tRNA(eAla/AAA)) is nearly identical to Escherichia coli elongator tRNA(Ala). The other has a sequence similar to Escherichia coli initiator tRNA(Met) (tRNA(iAla/AAA)). Although both tRNAs can be used in poly(U)-directed nonenzymatic initiation at 15 mM Mg2+, only the elongator tRNA can serve for peptide elongation and polyalanine synthesis. Only the initiator tRNA can be bound to 30S ribosomal subunits or 70S ribosomes in the presence of initiation factor 2 (IF-2) and low Mg2+ suggesting that it can function in enzymatic peptide initiation. A derivative of coumarin was covalently attached to the alpha amino group of alanine of these two Ala-tRNA species. The fluorescence spectra, quantum yield and anisotropy for the two Ala-tRNA derivatives are different when they are bound to 70S ribosomes (nonenzymatically in the presence of 15 mM Mg2+) indicating that the local environment of the probe is different. Also, the effect of erythromycin on their fluorescence is quite different, suggesting that the probes and presumably the alanine moiety to which they are covalently linked are in different positions on the ribosomes.

Full text

PDF
5749

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chattapadhyay R., Pelka H., Schulman L. H. Initiation of in vivo protein synthesis with non-methionine amino acids. Biochemistry. 1990 May 8;29(18):4263–4268. doi: 10.1021/bi00470a001. [DOI] [PubMed] [Google Scholar]
  2. Claesson C., Samuelsson T., Lustig F., Borén T. Codon reading properties of an unmodified transfer RNA. FEBS Lett. 1990 Oct 29;273(1-2):173–176. doi: 10.1016/0014-5793(90)81077-2. [DOI] [PubMed] [Google Scholar]
  3. Davanloo P., Rosenberg A. H., Dunn J. J., Studier F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035–2039. doi: 10.1073/pnas.81.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall K. B., Sampson J. R., Uhlenbeck O. C., Redfield A. G. Structure of an unmodified tRNA molecule. Biochemistry. 1989 Jul 11;28(14):5794–5801. doi: 10.1021/bi00440a014. [DOI] [PubMed] [Google Scholar]
  6. Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
  7. Lax S. R., Lauer S. J., Browning K. S., Ravel J. M. Purification and properties of protein synthesis initiation and elongation factors from wheat germ. Methods Enzymol. 1986;118:109–128. doi: 10.1016/0076-6879(86)18068-2. [DOI] [PubMed] [Google Scholar]
  8. Noller H. F. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227. doi: 10.1146/annurev.bi.60.070191.001203. [DOI] [PubMed] [Google Scholar]
  9. Normanly J., Abelson J. tRNA identity. Annu Rev Biochem. 1989;58:1029–1049. doi: 10.1146/annurev.bi.58.070189.005121. [DOI] [PubMed] [Google Scholar]
  10. Odom O. W., Hardesty B. An apparent conformational change in tRNA(Phe) that is associated with the peptidyl transferase reaction. Biochimie. 1987 Sep;69(9):925–938. doi: 10.1016/0300-9084(87)90226-4. [DOI] [PubMed] [Google Scholar]
  11. Odom O. W., Jr, Robbins D. J., Lynch J., Dottavio-Martin D., Kramer G., Hardesty B. Distances between 3' ends of ribosomal ribonucleic acids reassembled into Escherichia coli ribosomes. Biochemistry. 1980 Dec 23;19(26):5947–5954. doi: 10.1021/bi00567a001. [DOI] [PubMed] [Google Scholar]
  12. Odom O. W., Picking W. D., Hardesty B. Movement of tRNA but not the nascent peptide during peptide bond formation on ribosomes. Biochemistry. 1990 Dec 4;29(48):10734–10744. doi: 10.1021/bi00500a004. [DOI] [PubMed] [Google Scholar]
  13. Perret V., Garcia A., Puglisi J., Grosjean H., Ebel J. P., Florentz C., Giegé R. Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie. 1990 Oct;72(10):735–743. doi: 10.1016/0300-9084(90)90158-d. [DOI] [PubMed] [Google Scholar]
  14. Picking W. D., Odom O. W., Tsalkova T., Serdyuk I., Hardesty B. The conformation of nascent polylysine and polyphenylalanine peptides on ribosomes. J Biol Chem. 1991 Jan 25;266(3):1534–1542. [PubMed] [Google Scholar]
  15. Rappoport S., Lapidot Y. The chemical preparation of acetylaminoacyl-tRNA. Methods Enzymol. 1974;29:685–688. doi: 10.1016/0076-6879(74)29060-8. [DOI] [PubMed] [Google Scholar]
  16. Rychlik W., Odom O. W., Hardesty B. Localization of the elongation factor Tu binding site on Escherichia coli ribosomes. Biochemistry. 1983 Jan 4;22(1):85–93. doi: 10.1021/bi00270a012. [DOI] [PubMed] [Google Scholar]
  17. Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schimmel P. Parameters for the molecular recognition of transfer RNAs. Biochemistry. 1989 Apr 4;28(7):2747–2759. doi: 10.1021/bi00433a001. [DOI] [PubMed] [Google Scholar]
  19. Seong B. L., RajBhandary U. L. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc Natl Acad Sci U S A. 1987 Jan;84(2):334–338. doi: 10.1073/pnas.84.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sprinzl M., Hartmann T., Weber J., Blank J., Zeidler R. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1989;17 (Suppl):r1–172. doi: 10.1093/nar/17.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Varshney U., RajBhandary U. L. Initiation of protein synthesis from a termination codon. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1586–1590. doi: 10.1073/pnas.87.4.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wakao H., Romby P., Westhof E., Laalami S., Grunberg-Manago M., Ebel J. P., Ehresmann C., Ehresmann B. The solution structure of the Escherichia coli initiator tRNA and its interactions with initiation factor 2 and the ribosomal 30 S subunit. J Biol Chem. 1989 Dec 5;264(34):20363–20371. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES