Abstract
We have previously purified and characterized two different S. cerevisiae enzymes that produce pseudouridine specifically in nucleotide positions 13 and 55, respectively, in their tRNA substrates. The interactions of these enzymes with fluorinated tRNAs have now been studied. Such RNAs were produced by in vitro transcription using as templates synthetic genes that encode variants of a yeast glycine tRNA. RNAs substituted with fluorouracil were found to markedly inhibit pseudouridine synthase activity and the inhibitory effect of a tRNA was to a large extent dependent on the presence of fluorouracil in the nucleotide position where normally pseudouridylation occurs. Pseudouridine synthases were shown to form highly stable, non-covalent complexes with fluorinated tRNAs and we demonstrate that this interaction may be used to further characterize and purify these enzymes. The use of 5-fluorouracil as a cancer therapeutic agent is discussed in relation to our results.
Full text
PDF![6139](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5282/329106/e402f1b08613/nar00102-0065.png)
![6140](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5282/329106/23e7dbf06d1f/nar00102-0066.png)
![6141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5282/329106/bc6eaa07fd3e/nar00102-0067.png)
![6142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5282/329106/9a84d301d870/nar00102-0068.png)
![6143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5282/329106/116738fefb31/nar00102-0069.png)
![6144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5282/329106/1b6677336402/nar00102-0070.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akazawa S., Kumai R., Yoshida K., Ayusawa D., Shimizu K., Seno T. The cytotoxicity of 5-fluorouracil is due to its incorporation into RNA not its inhibition of thymidylate synthase as evidenced by the use of a mouse cell mutant deficient in thymidylate synthase. Jpn J Cancer Res. 1986 Jul;77(7):620–624. [PubMed] [Google Scholar]
- Armstrong R. D., Lewis M., Stern S. G., Cadman E. C. Acute effect of 5-fluorouracil on cytoplasmic and nuclear dihydrofolate reductase messenger RNA metabolism. J Biol Chem. 1986 Jun 5;261(16):7366–7371. [PubMed] [Google Scholar]
- Burrell H. R., Horowitz J. Affinity binding of Escherichia coli ribosomal proteins to immobilized RNA. FEBS Lett. 1975 Jan 1;49(3):306–309. doi: 10.1016/0014-5793(75)80772-1. [DOI] [PubMed] [Google Scholar]
- Burrell H. R., Horowitz J. Binding of ribosomal proteins to RNA covalently coupled to agarose. Eur J Biochem. 1977 May 16;75(2):533–544. doi: 10.1111/j.1432-1033.1977.tb11554.x. [DOI] [PubMed] [Google Scholar]
- Chu W. C., Horowitz J. 19F NMR of 5-fluorouracil-substituted transfer RNA transcribed in vitro: resonance assignment of fluorouracil-guanine base pairs. Nucleic Acids Res. 1989 Sep 25;17(18):7241–7252. doi: 10.1093/nar/17.18.7241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cortese R., Kammen H. O., Spengler S. J., Ames B. N. Biosynthesis of pseudouridine in transfer ribonucleic acid. J Biol Chem. 1974 Feb 25;249(4):1103–1108. [PubMed] [Google Scholar]
- Danenberg P. V., Shea L. C., Danenberg K. Characterization of the mode of binding of substrates to the active site of Tetrahymena self-splicing RNA using 5-fluorouracil-substituted mini-exons. Biochemistry. 1989 Aug 8;28(16):6779–6785. doi: 10.1021/bi00442a035. [DOI] [PubMed] [Google Scholar]
- Frendewey D. A., Kladianos D. M., Moore V. G., Kaiser I. I. Loss of tRNA 5-methyluridine methyltransferase and pseudouridine synthetase activities in 5-fluorouracil and 1-(tetrahydro-2-furanyl)-5-fluorouracil (ftorafur)-treated Escherichia coli. Biochim Biophys Acta. 1982 Apr 26;697(1):31–40. doi: 10.1016/0167-4781(82)90042-2. [DOI] [PubMed] [Google Scholar]
- Heidelberger C., Danenberg P. V., Moran R. G. Fluorinated pyrimidines and their nucleosides. Adv Enzymol Relat Areas Mol Biol. 1983;54:58–119. [PubMed] [Google Scholar]
- Kammen H. O., Marvel C. C., Hardy L., Penhoet E. E. Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. J Biol Chem. 1988 Feb 15;263(5):2255–2263. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Pinedo H. M., Peters G. F. Fluorouracil: biochemistry and pharmacology. J Clin Oncol. 1988 Oct;6(10):1653–1664. doi: 10.1200/JCO.1988.6.10.1653. [DOI] [PubMed] [Google Scholar]
- Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samuelsson T., Borén T., Johansen T. I., Lustig F. Properties of a transfer RNA lacking modified nucleosides. J Biol Chem. 1988 Sep 25;263(27):13692–13699. [PubMed] [Google Scholar]
- Samuelsson T., Olsson M. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae. J Biol Chem. 1990 May 25;265(15):8782–8787. [PubMed] [Google Scholar]
- Santi D. V., Hardy L. W. Catalytic mechanism and inhibition of tRNA (uracil-5-)methyltransferase: evidence for covalent catalysis. Biochemistry. 1987 Dec 29;26(26):8599–8606. doi: 10.1021/bi00400a016. [DOI] [PubMed] [Google Scholar]
- Sierakowska H., Shukla R. R., Dominski Z., Kole R. Inhibition of pre-mRNA splicing by 5-fluoro-, 5-chloro-, and 5-bromouridine. J Biol Chem. 1989 Nov 15;264(32):19185–19191. [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh C. Fluorinated substrate analogs: routes of metabolism and selective toxicity. Adv Enzymol Relat Areas Mol Biol. 1983;55:197–289. doi: 10.1002/9780470123010.ch3. [DOI] [PubMed] [Google Scholar]