Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Dec 11;19(23):6465–6468. doi: 10.1093/nar/19.23.6465

Stereochemistry of methyl transfer catalyzed by tRNA (m5U54)-methyltransferase--evidence for a single displacement mechanism.

J T Kealey 1, S Lee 1, H G Floss 1, D V Santi 1
PMCID: PMC329199  PMID: 1754383

Abstract

tRNA (m5U54)-methyltransferase (RUMT) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the 5-carbon of uridine 54 of tRNA. We have determined the steric course of methyl transfer, using (methyl-R)- and (methyl-S)-[methyl-2H1,3H]-AdoMet as the chiral methyl donors, and tRNA lacking the 5-methyl group at position 54 as the acceptor. Following methyl transfer, ribothymidine was isolated and degraded to chiral acetic acid for configurational analysis. Transfer of the chiral methyl group to U54 proceeded with inversion of configuration of the chiral methyl group, suggesting that RUMT catalyzed methyl transfer occurs by a single SN2 displacement mechanism.

Full text

PDF
6465

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Björk G. R., Neidhardt F. C. Physiological and biochemical studies on the function of 5-methyluridine in the transfer ribonucleic acid of Escherichia coli. J Bacteriol. 1975 Oct;124(1):99–111. doi: 10.1128/jb.124.1.99-111.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cornforth J. W., Redmond J. W., Eggerer H., Buckel W., Gutschow C. Asymmetric methyl groups, and the mechanism of malate synthase. Nature. 1969 Mar 29;221(5187):1212–1213. doi: 10.1038/2211212a0. [DOI] [PubMed] [Google Scholar]
  4. Floss H. G., Tsai M. D. Chiral methyl groups. Adv Enzymol Relat Areas Mol Biol. 1979;50:243–302. doi: 10.1002/9780470122952.ch5. [DOI] [PubMed] [Google Scholar]
  5. Hall K. B., Sampson J. R., Uhlenbeck O. C., Redfield A. G. Structure of an unmodified tRNA molecule. Biochemistry. 1989 Jul 11;28(14):5794–5801. doi: 10.1021/bi00440a014. [DOI] [PubMed] [Google Scholar]
  6. Ho D. K., Wu J. C., Santi D. V., Floss H. G. Stereochemical studies of the C-methylation of deoxycytidine catalyzed by HhaI methylase and the N-methylation of deoxyadenosine catalyzed by EcoRI methylase. Arch Biochem Biophys. 1991 Feb 1;284(2):264–269. doi: 10.1016/0003-9861(91)90294-s. [DOI] [PubMed] [Google Scholar]
  7. Lenz H., Eggerer H. Enzymic generation of chiral acetates. A quantitative evaluation of their configurational assay. Eur J Biochem. 1976 May 17;65(1):237–246. doi: 10.1111/j.1432-1033.1976.tb10410.x. [DOI] [PubMed] [Google Scholar]
  8. Woodard R. W., Tsai M. D., Floss H. G., Crooks P. A., Coward J. K. Stereochemical course of the transmethylation catalyzed by catechol O-methyltransferase. J Biol Chem. 1980 Oct 10;255(19):9124–9127. [PubMed] [Google Scholar]
  9. Yang S., Reinitz E. R., Gefter M. L. Role of modifications in tyrosine transfer RNA. II. Ribothymidylate-deficient tRNA. Arch Biochem Biophys. 1973 Jul;157(1):55–62. doi: 10.1016/0003-9861(73)90389-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES