Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Dec 25;19(24):6771–6779. doi: 10.1093/nar/19.24.6771

Solution conformation of an oligonucleotide containing a G.G mismatch determined by nuclear magnetic resonance and molecular mechanics.

J A Cognet 1, J Gabarro-Arpa 1, M Le Bret 1, G A van der Marel 1, J H van Boom 1, G V Fazakerley 1
PMCID: PMC329308  PMID: 1837078

Abstract

We have determined by two-dimensional nuclear magnetic resonance studies and molecular mechanics calculations the three dimensional solution structure of the non-selfcomplementary oligonucleotide, d(GAGGAGGCACG). d(CGTGCGTCCTC) in which the central base pair is G.G. This is the first structural determination of a G.G mismatch in a oligonucleotide. Two dimensional nuclear magnetic resonance spectra show that the bases of the mismatched pair are stacked into the helix and that the helix adopts a classical B-DNA form. Spectra of the exchangeable protons show that the two guanosines are base paired via their imino protons. For the non-exchangeable protons and for some of the exchangeable protons nuclear Overhauser enhancement build up curves at short mixing times have been measured. These give 84 proton-proton distances which are sensitive to the helix conformation. One of the guanosines adopts a normal anti conformation while the other is syn or close to syn. All non-terminal sugars are C2' endo. These data sets were incorporated into the refinement of the oligonucleotide structure by molecular mechanics calculations. The G.G mismatch shows a symmetrical base pairing structure. Although the mismatch is very bulky many of its features are close to that of normal B-DNA. The mismatch induces a small lateral shift in the helix axis and the sum of the helical twist above and below the mismatch is close to that of B-DNA.

Full text

PDF
6771

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown T., Hunter W. N., Kneale G., Kennard O. Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2402–2406. doi: 10.1073/pnas.83.8.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bugg C. E., Thewalt U. T., Marsh R. E. Base stacking in nucleic acid components: the crystal structures of guanine, guanosine and iosine. Biochem Biophys Res Commun. 1968 Nov 8;33(3):436–440. doi: 10.1016/0006-291x(68)90591-3. [DOI] [PubMed] [Google Scholar]
  3. Carbonnaux C., Fazakerley G. V., Sowers L. C. An NMR structural study of deaminated base pairs in DNA. Nucleic Acids Res. 1990 Jul 25;18(14):4075–4081. doi: 10.1093/nar/18.14.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cognet J. A., Gabarro-Arpa J., Cuniasse P., Fazakerley G. V., Le Bret M. Molecular mechanics and dynamics of an abasic frameshift in DNA and comparison to NMR data. J Biomol Struct Dyn. 1990 Apr;7(5):1095–1115. doi: 10.1080/07391102.1990.10508549. [DOI] [PubMed] [Google Scholar]
  5. Cuniasse P., Sowers L. C., Eritja R., Kaplan B., Goodman M. F., Cognet J. A., Le Bret M., Guschlbauer W., Fazakerley G. V. Abasic frameshift in DNA. Solution conformation determined by proton NMR and molecular mechanics calculations. Biochemistry. 1989 Mar 7;28(5):2018–2026. doi: 10.1021/bi00431a009. [DOI] [PubMed] [Google Scholar]
  6. Cuniasse P., Sowers L. C., Eritja R., Kaplan B., Goodman M. F., Cognet J. A., LeBret M., Guschlbauer W., Fazakerley G. V. An abasic site in DNA. Solution conformation determined by proton NMR and molecular mechanics calculations. Nucleic Acids Res. 1987 Oct 12;15(19):8003–8022. doi: 10.1093/nar/15.19.8003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dohet C., Wagner R., Radman M. Repair of defined single base-pair mismatches in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jan;82(2):503–505. doi: 10.1073/pnas.82.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donohue J. HYDROGEN-BONDED HELICAL CONFIGURATIONS OF POLYNUCLEOTIDES. Proc Natl Acad Sci U S A. 1956 Feb;42(2):60–65. doi: 10.1073/pnas.42.2.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fazakerley G. V., Quignard E., Woisard A., Guschlbauer W., van der Marel G. A., van Boom J. H., Jones M., Radman M. Structures of mismatched base pairs in DNA and their recognition by the Escherichia coli mismatch repair system. EMBO J. 1986 Dec 20;5(13):3697–3703. doi: 10.1002/j.1460-2075.1986.tb04702.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fazakerley G. V., van der Marel G. A., van Boom J. H., Guschlbauer W. Helix opening in deoxyribonucleic acid from a proton nuclear magnetic resonance study of imino and amino protons in d(CG)3. Nucleic Acids Res. 1984 Nov 12;12(21):8269–8279. doi: 10.1093/nar/12.21.8269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fratini A. V., Kopka M. L., Drew H. R., Dickerson R. E. Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. J Biol Chem. 1982 Dec 25;257(24):14686–14707. [PubMed] [Google Scholar]
  12. GELLERT M., LIPSETT M. N., DAVIES D. R. Helix formation by guanylic acid. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2013–2018. doi: 10.1073/pnas.48.12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gelin B. R., Karplus M. Sidechain torsional potentials and motion of amino acids in porteins: bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2002–2006. doi: 10.1073/pnas.72.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hunter W. N., Brown T., Kennard O. Structural features and hydration of d(C-G-C-G-A-A-T-T-A-G-C-G); a double helix containing two G.A mispairs. J Biomol Struct Dyn. 1986 Oct;4(2):173–191. doi: 10.1080/07391102.1986.10506338. [DOI] [PubMed] [Google Scholar]
  15. Jones M., Wagner R., Radman M. Repair of a mismatch is influenced by the base composition of the surrounding nucleotide sequence. Genetics. 1987 Apr;115(4):605–610. doi: 10.1093/genetics/115.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kramer B., Kramer W., Fritz H. J. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell. 1984 Oct;38(3):879–887. doi: 10.1016/0092-8674(84)90283-6. [DOI] [PubMed] [Google Scholar]
  17. Lu A. L., Clark S., Modrich P. Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4639–4643. doi: 10.1073/pnas.80.15.4639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lu A. L., Welsh K., Clark S., Su S. S., Modrich P. Repair of DNA base-pair mismatches in extracts of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1984;49:589–596. doi: 10.1101/sqb.1984.049.01.066. [DOI] [PubMed] [Google Scholar]
  19. Mazza F., Sobell H. M., Kartha G. Base-pairing configurations between purines and pyrimidines in the solid state. IV. Crystal and molecular structure of two 1:1 hydrogen-bonded complexes, 1-methyl-5-bromouracil: 9-ethyl-2-aminopurine and 1-methyl-5-fluorouracil: 9-ethyl-2-aminopurine. J Mol Biol. 1969 Aug 14;43(3):407–422. doi: 10.1016/0022-2836(69)90349-0. [DOI] [PubMed] [Google Scholar]
  20. Patel D. J., Kozlowski S. A., Ikuta S., Itakura K. Deoxyguanosine-deoxyadenosine pairing in the d(C-G-A-G-A-A-T-T-C-G-C-G) duplex: conformation and dynamics at and adjacent to the dG X dA mismatch site. Biochemistry. 1984 Jul 3;23(14):3207–3217. doi: 10.1021/bi00309a015. [DOI] [PubMed] [Google Scholar]
  21. Privé G. G., Heinemann U., Chandrasegaran S., Kan L. S., Kopka M. L., Dickerson R. E. Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science. 1987 Oct 23;238(4826):498–504. doi: 10.1126/science.3310237. [DOI] [PubMed] [Google Scholar]
  22. Radman M., Wagner R. Effects of DNA methylation on mismatch repair, mutagenesis, and recombination in Escherichia coli. Curr Top Microbiol Immunol. 1984;108:23–28. doi: 10.1007/978-3-642-69370-0_3. [DOI] [PubMed] [Google Scholar]
  23. Sasisekharan V., Zimmerman S., Davies D. R. The structure of helical 5'-guanosine monophosphate. J Mol Biol. 1975 Feb 25;92(2):171–179. doi: 10.1016/0022-2836(75)90221-1. [DOI] [PubMed] [Google Scholar]
  24. Shore D., Baldwin R. L. Energetics of DNA twisting. I. Relation between twist and cyclization probability. J Mol Biol. 1983 Nov 15;170(4):957–981. doi: 10.1016/s0022-2836(83)80198-3. [DOI] [PubMed] [Google Scholar]
  25. Sobell H. M. The crystal structure of a purine-pyrimidine hydrogen-bonded complex: 9-ethyl-2-aminopurine and 1-methyl-5-fluorouracil. J Mol Biol. 1966 Jun;18(1):1–7. doi: 10.1016/s0022-2836(66)80071-2. [DOI] [PubMed] [Google Scholar]
  26. Sowers L. C., Eritja R., Kaplan B., Goodman M. F., Fazakerly G. V. Equilibrium between a wobble and ionized base pair formed between fluorouracil and guanine in DNA as studied by proton and fluorine NMR. J Biol Chem. 1988 Oct 15;263(29):14794–14801. [PubMed] [Google Scholar]
  27. Sowers L. C., Goodman M. F., Eritja R., Kaplan B., Fazakerley G. V. Ionized and wobble base-pairing for bromouracil-guanine in equilibrium under physiological conditions. A nuclear magnetic resonance study on an oligonucleotide containing a bromouracil-guanine base-pair as a function of pH. J Mol Biol. 1989 Jan 20;205(2):437–447. doi: 10.1016/0022-2836(89)90353-7. [DOI] [PubMed] [Google Scholar]
  28. Tougard P., Chantot J. F., Guschlbauer W. Nucleoside conformations. X. An X-ray fiber diffraction study of the gels of guanine nucleosides. Biochim Biophys Acta. 1973 Apr 21;308(7):9–16. [PubMed] [Google Scholar]
  29. Voet D., Rich A. The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog Nucleic Acid Res Mol Biol. 1970;10:183–265. doi: 10.1016/s0079-6603(08)60565-6. [DOI] [PubMed] [Google Scholar]
  30. Wagner R., Dohet C., Jones M., Doutriaux M. P., Hutchinson F., Radman M. Involvement of Escherichia coli mismatch repair in DNA replication and recombination. Cold Spring Harb Symp Quant Biol. 1984;49:611–615. doi: 10.1101/sqb.1984.049.01.069. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES