Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 May 11;19(9):2485–2488. doi: 10.1093/nar/19.9.2485

Site-specific mutagenesis in cells with normal DNA repair systems: transitions produced from DNA carrying a single O6-alkylguanine.

R W Chambers 1
PMCID: PMC329461  PMID: 2041784

Abstract

This paper describes a systematic study of transition frequencies produced in vivo when a homologous series of O6-alkylguanine residues located at a preselected position in gene G of phi X174 form I' DNA (double-stranded, circular, covalently-closed, relaxed) is transfected into spheroplasts from two strains of Escherichia coli having normal DNA repair systems. Mutant frequencies were measured as percent of total phage produced by single bursts. The results are: (A) Synthetic DNA without any alkyl group gave a transition frequency of 0.02%. (B) In E. coli AB1157, the frequencies fall into two groups depending on the alkyl group: methyl and ethyl, 8-11%; n-propyl and n-butyl approximately 0.9%. (C) The average transition frequencies were higher in AB1157 than in C600. These data demonstrate that a single O6-alkylguanine residue can produce a specific transition at significant frequencies in cells with normal repair systems and that the mutant frequency depends upon the nature of the alkyl group and the cell type.

Full text

PDF
2485

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhanot O. S., Khan S. A., Chambers R. W. A new system for studying molecular mechanisms of mutation by carcinogens. J Biol Chem. 1979 Dec 25;254(24):12684–12693. [PubMed] [Google Scholar]
  2. Bhanot O. S., Ray A. The in vivo mutagenic frequency and specificity of O6-methylguanine in phi X174 replicative form DNA. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7348–7352. doi: 10.1073/pnas.83.19.7348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borowy-Borowski H., Chambers R. W. A study of side reactions occurring during synthesis of oligodeoxynucleotides containing O6-alkyldeoxyguanosine residues at preselected sites. Biochemistry. 1987 May 5;26(9):2465–2471. doi: 10.1021/bi00383a010. [DOI] [PubMed] [Google Scholar]
  4. Chambers R. W., Kućan I., Kućan Z. Isolation and characterization of phi X174 mutants carrying lethal missense mutations in gene G. Nucleic Acids Res. 1982 Oct 25;10(20):6465–6473. doi: 10.1093/nar/10.20.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chambers R. W. On the nature of suppression by Escherichia coli HF4714. Mutat Res. 1989 Jan;210(1):207–209. doi: 10.1016/0027-5107(89)90060-2. [DOI] [PubMed] [Google Scholar]
  6. Chambers R. W., Sledziewska-Gojska E., Hirani-Hojatti S., Borowy-Borowski H. uvrA and recA mutations inhibit a site-specific transition produced by a single O6-methylguanine in gene G of bacteriophage phi X174. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7173–7177. doi: 10.1073/pnas.82.21.7173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chambers R. W., Sledziewska-Gojska E., Hirani-Hojatti S. In vivo effect of DNA repair on the transition frequency produced from a single O6-methyl- or O6-n-butyl-guanine in a T:G base pair. Mol Gen Genet. 1988 Aug;213(2-3):325–331. doi: 10.1007/BF00339598. [DOI] [PubMed] [Google Scholar]
  8. GUTHRIE G. D., SINSHEIMER R. L. Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage phi X174. Biochim Biophys Acta. 1963 Jun 25;72:290–297. [PubMed] [Google Scholar]
  9. Gschwender H. H., Hofschneider P. H. Lysis inhibition of phi-X174-, M12-, and Q-beta-infected Escherichia coli bacteria by magnesium ions. Biochim Biophys Acta. 1969 Oct 22;190(2):454–459. doi: 10.1016/0005-2787(69)90094-x. [DOI] [PubMed] [Google Scholar]
  10. Hill-Perkins M., Jones M. D., Karran P. Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat Res. 1986 Sep;162(2):153–163. doi: 10.1016/0027-5107(86)90081-3. [DOI] [PubMed] [Google Scholar]
  11. Loechler E. L., Green C. L., Essigmann J. M. In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6271–6275. doi: 10.1073/pnas.81.20.6271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Malling H. V., Fater M. C., Burkhart J. G., Hardies S. C., Hutchison C. A., 3rd, Edgell M. H. Storage of spheroplasts at -70 degrees C for transfection with phi X174 RF DNA. Gene Anal Tech. 1987 Mar-Apr;4(2):23–26. doi: 10.1016/0735-0651(87)90014-8. [DOI] [PubMed] [Google Scholar]
  13. Schendel P. F., Robins P. E. Repair of O6-methylguanine in adapted Escherichia coli. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6017–6020. doi: 10.1073/pnas.75.12.6017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Todd M. L., Schendel P. F. Repair and mutagenesis in Escherichia coli K-12 after exposure to various alkyl-nitrosoguanidines. J Bacteriol. 1983 Oct;156(1):6–12. doi: 10.1128/jb.156.1.6-12.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES