Abstract
The transport of bile acid was studied in basolateral membrane vesicles isolated from rat small intestine. Taurocholate transport into an osmotically reactive intravesicular space was Na+ independent. The uptake of taurocholate in jejunal and ileal vesicles preloaded with sulfate was stimulated with respect to uptake in unpreloaded vesicles. Glycocholate inhibited the transstimulation of taurocholate uptake by sulfate. Sulfate and taurocholate uptake in ileal vesicles preloaded with bicarbonate was stimulated with respect to uptake in unpreloaded vesicles. Taurocholate inhibited the transstimulation of sulfate uptake by bicarbonate. When ileal vesicles were loaded with p-aminohippurate, an early transstimulation of taurocholate was found that exceeded equilibrium uptake, was insensitive to a K+ diffusion potential, and was cis-inhibited by taurocholate, glycocholate, pyruvate, p-aminohippurate, probenecid, chloride, sulfate, and bicarbonate. These data indicate the presence of an anion exchanger in intestinal basolateral membrane vesicles that may be involved in the exit of bile acids from the enterocyte.
Full text
PDF![44](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbd/329529/c739ac8e2208/jcinvest00480-0058.png)
![45](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbd/329529/6998c0b5b53e/jcinvest00480-0059.png)
![46](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbd/329529/f9fe306ed5ae/jcinvest00480-0060.png)
![47](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbd/329529/6d5e654ab185/jcinvest00480-0061.png)
![48](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbd/329529/501c8d66fc43/jcinvest00480-0062.png)
![49](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbd/329529/a126861071ec/jcinvest00480-0063.png)
![50](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbd/329529/e4d690396265/jcinvest00480-0064.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beesley R. C., Faust R. G. Sodium ion-coupled uptake of taurocholate by intestinal brush-border membrane vesicles. Biochem J. 1979 Feb 15;178(2):299–303. doi: 10.1042/bj1780299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietschy J. M., Salomon H. S., Siperstein M. D. Bile acid metabolism. I. Studies on the mechanisms of intestinal transport. J Clin Invest. 1966 Jun;45(6):832–846. doi: 10.1172/JCI105399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLT P. R. INTESTINAL ABSORPTION OF BILE SALTS IN THE RAT. Am J Physiol. 1964 Jul;207:1–7. doi: 10.1152/ajplegacy.1964.207.1.1. [DOI] [PubMed] [Google Scholar]
- Hagenbuch B., Stange G., Murer H. Transport of sulphate in rat jejunal and rat proximal tubular basolateral membrane vesicles. Pflugers Arch. 1985 Oct;405(3):202–208. doi: 10.1007/BF00582561. [DOI] [PubMed] [Google Scholar]
- Hildmann B., Storelli C., Haase W., Barac-Nieto M., Murer H. Sodium ion/L-lactate co-transport in rabbit small-intestinal brush-border-membrane vesicles. Biochem J. 1980 Jan 15;186(1):169–176. doi: 10.1042/bj1860169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. J Clin Invest. 1984 Mar;73(3):659–663. doi: 10.1172/JCI111257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology. 1982 Sep-Oct;2(5):572–579. doi: 10.1002/hep.1840020510. [DOI] [PubMed] [Google Scholar]
- Krag E., Phillips S. F. Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J Clin Invest. 1974 Jun;53(6):1686–1694. doi: 10.1172/JCI107720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lack L., Walker J. T., Hsu C. Y. Taurocholate uptake by membrane vesicles prepared from ileal brush borders. Life Sci. 1977 May 1;20(9):1607–1611. doi: 10.1016/0024-3205(77)90455-6. [DOI] [PubMed] [Google Scholar]
- Lack L., Weiner I. M. Intestinal bile salt transport: structure-activity relationships and other properties. Am J Physiol. 1966 May;210(5):1142–1152. doi: 10.1152/ajplegacy.1966.210.5.1142. [DOI] [PubMed] [Google Scholar]
- Löw I., Friedrich T., Burckhardt G. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol. 1984 Mar;246(3 Pt 2):F334–F342. doi: 10.1152/ajprenal.1984.246.3.F334. [DOI] [PubMed] [Google Scholar]
- Lücke H., Stange G., Kinne R., Murer H. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum. Biochem J. 1978 Sep 15;174(3):951–958. doi: 10.1042/bj1740951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pritchard J. B., Renfro J. L. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci U S A. 1983 May;80(9):2603–2607. doi: 10.1073/pnas.80.9.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scalera V., Storelli C., Storelli-Joss C., Haase W., Murer H. A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells. Biochem J. 1980 Jan 15;186(1):177–181. doi: 10.1042/bj1860177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scharschmidt B. F., Keeffe E. B., Blankenship N. M., Ockner R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J Lab Clin Med. 1979 May;93(5):790–799. [PubMed] [Google Scholar]
- Schiff E. R., Small N. C., Dietschy J. M. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest. 1972 Jun;51(6):1351–1362. doi: 10.1172/JCI106931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A., Burckhardt G., Murer H., Rumrich G., Ullrich K. J. Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro. J Clin Invest. 1981 Apr;67(4):1141–1150. doi: 10.1172/JCI110128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A., Dietschy J. M. Characterization of bile acid absorption across the unstirred water layer and brush border of the rat jejunum. J Clin Invest. 1972 Dec;51(12):3015–3025. doi: 10.1172/JCI107129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A. Intestinal transport of bile acids. Am J Physiol. 1981 Aug;241(2):G83–G92. doi: 10.1152/ajpgi.1981.241.2.G83. [DOI] [PubMed] [Google Scholar]
- Wilson F. A., Treanor L. L. Characterization of bile acid binding to rat intestinal brush border membranes. J Membr Biol. 1977 May 12;33(3-4):213–230. doi: 10.1007/BF01869517. [DOI] [PubMed] [Google Scholar]
- Wilson F. A., Treanor L. L. Characterization of the passive and active transport mechanisms for bile acid uptake into rat isolated intestinal epithelial cells. Biochim Biophys Acta. 1975 Oct 6;406(2):280–293. doi: 10.1016/0005-2736(75)90010-3. [DOI] [PubMed] [Google Scholar]
- Wilson F. A., Treanor L. L. Glycodeoxycholate transport in brush border membrane vesicles isolated from rat jejunum and ileum. Biochim Biophys Acta. 1979 Jul 5;554(2):430–440. doi: 10.1016/0005-2736(79)90382-1. [DOI] [PubMed] [Google Scholar]
- Wilson F. A., Treanor L. L. Studies of relationship among bile-acid uptake, Na+, K+-ATPase, and Na+ gradient in isolated cells from rat ileum. Gastroenterology. 1981 Jul;81(1):54–60. [PubMed] [Google Scholar]
- Wright E. M., van Os C. H., Mircheff A. K. Sugar uptake by intestinal basolateral membrane vesicles. Biochim Biophys Acta. 1980 Mar 27;597(1):112–124. doi: 10.1016/0005-2736(80)90155-8. [DOI] [PubMed] [Google Scholar]