Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):o610–o611. doi: 10.1107/S1600536812003674

Ergotaminine

Stefan Merkel a, Robert Köppen a, Matthias Koch a, Franziska Emmerling a,*, Irene Nehls a
PMCID: PMC3295412  PMID: 22412523

Abstract

The title compound {systematic name: (6aR,9S)-N-[(2R,5S,10aS,10bS)-5-benzyl-10b-hy­droxy-2-methyl-3,6-dioxoocta­hydro-8H-oxazolo[3,2-a]pyrrolo­[2,1-c]pyrazin-2-yl]-7-methyl-4,6,6a,7,8,9-hexa­hydro­indolo[4,3-fg]quinoline-9-carboxamide}, C33H35N5O5, was formed by an epimerization reaction of ergotamine. The non-aromatic ring (ring C of the ergoline skeleton) directly fused to the aromatic rings is nearly planar [maximum deviation = 0.317 (4) Å] and shows an envelope conformation, whereas ring D, involved in an intra­molecular N—H⋯N hydrogen bond exhibits a slightly distorted chair conformation. The structure displays chains running approximately parallel to the diagonal of bc plane that are formed through N—H⋯O hydrogen bonds.

Related literature  

Ergotaminine is an ergot alkaloid formed by, among others, the fungus Claviceps purpurea on cereal grains and grasses during the growth process; see: Crews et al. (2009); Müller et al. (2009). For investigations of the biologically inactive C8-(S)-isomer ergotaminine, see: Pierri et al. (1982); Komarova & Tolkachev (2001). For the crystal structure of ergotamine tartrate ethanol solvate, see: Pakhomova et al. (1995). For the crystal structure of ergometrinine, another C8-(S)-configured ergotalkaloid, see: Merkel et al. (2010). For the solubility of ergotaminine, see: Stoll (1945).graphic file with name e-68-0o610-scheme1.jpg

Experimental  

Crystal data  

  • C33H35N5O5

  • M r = 581.66

  • Monoclinic, Inline graphic

  • a = 10.974 (3) Å

  • b = 9.662 (2) Å

  • c = 14.450 (4) Å

  • β = 105.059 (15)°

  • V = 1479.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.2 × 0.1 × 0.06 mm

Data collection  

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.879, T max = 0.986

  • 20196 measured reflections

  • 2781 independent reflections

  • 2240 reflections with I > 2σ(I)

  • R int = 0.087

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.093

  • S = 1.12

  • 2781 reflections

  • 390 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: determined from the synthesis

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003674/ds2173sup1.cif

e-68-0o610-sup1.cif (39.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003674/ds2173Isup2.hkl

e-68-0o610-Isup2.hkl (136.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003674/ds2173Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3 0.86 2.53 2.955 (4) 112
N4—H3⋯O5i 0.86 2.17 2.981 (5) 157

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The fungus Claviceps purpurea is distributed worldwide through various climatic zones and produces a broad range of ergot alkaloids on grasses and cereal grains during the growth process whereas six epimeric pairs are predominantly formed. One of these main ergot alkaloids is ergotaminine. Contamination of flour and cereal based foods with ergot alkaloids including ergotaminine has previously been reported (Crews et al., 2009; Müller et al., 2009). The biologically inactive C8-(S)-isomer ergotaminine (Pierri et al., 1982) can be converted to the biologically active C8-(R)-isomer ergotamine and vice versa (Komarova & Tolkachev, 2001). The molecule crystallizes in the monoclinic space group P21. The molecular structure of the compound and the atom-labeling scheme are shown in Fig. 1. The absolute configuration could not be defined confidently based on the single-crystal diffraction data. It was however established based on liquid chromatography data that confirmed the epimeric purity of the obtained ergotaminine crystals. Besides the intramolecular hydrogen bonds between N2—H2 and N3 (see Table 1; not shown in Fig. 2), each molecule is connected to two adjacent molecules via intermolecular hydrogen bonds (see Table 1; see dashed green bonds in Fig. 2). As a result adjacent chains run along the [011] and [011] direction in an oppositely slanted fashion and with an inlined angle of 69.4°.

Experimental

Ergotamine tartrate was obtained from Sigma–Aldrich (Taufkirchen, Germany). The stereoselective conversion of ergotamine to ergotaminine was carried out as follows: 12.4 mg ergotamine tartrate were dissolved in a solution of 5 ml methanol and 0.5 ml water. For epimerization reaction the resulting mixture was stored in a sealed vial in darkness at ambient temperature for two weeks. As a result of the slow crystallization colorless crystals of the title compound were formed, because of a substantial solubility difference between ergotamine and ergotaminine (as reported by Stoll (1945)). The isomeric purity (98%) of ergotaminine was proved by HPLC-FLD.

Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

The N—H and O—H H atoms were located in difference maps and fixed in their found positions (AFIX 3) with Uiso(H) = 1.2 of the parent atom Ueq or 1.5 Ueq(Cmethyl, O).

Figures

Fig. 1.

Fig. 1.

ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

View of the unit cell of the title compound, showing the hydrogen-bonded chains are running approximately parallel to the diagonal of b-c plane. Hydrogen bonds are drawn as dashed green lines. H atoms are omitted for clarity.

Crystal data

C33H35N5O5 F(000) = 616
Mr = 581.66 Dx = 1.306 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 86 reflections
a = 10.974 (3) Å θ = 4–29°
b = 9.662 (2) Å µ = 0.09 mm1
c = 14.450 (4) Å T = 296 K
β = 105.059 (15)° Plate, colourless
V = 1479.5 (7) Å3 0.2 × 0.1 × 0.06 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer 2781 independent reflections
Radiation source: fine-focus sealed tube 2240 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.087
ω/2θ scans θmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→12
Tmin = 0.879, Tmax = 0.986 k = −11→11
20196 measured reflections l = −14→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0345P)2] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2781 reflections Δρmax = 0.15 e Å3
390 parameters Δρmin = −0.19 e Å3
1 restraint Absolute structure: syn
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2567 (2) 0.1765 (2) 0.57682 (16) 0.0564 (7)
O2 0.3529 (2) 0.2000 (2) 0.45142 (16) 0.0526 (6)
H1 0.3525 0.2846 0.4559 0.079*
O3 −0.0202 (3) 0.3535 (3) 0.45451 (19) 0.0753 (8)
O4 0.2943 (3) 0.4688 (3) 0.52044 (19) 0.0787 (9)
O5 0.0781 (3) −0.0063 (3) 0.21039 (18) 0.0726 (8)
N1 0.1306 (2) 0.2059 (3) 0.42571 (18) 0.0458 (7)
N2 0.2054 (3) 0.3898 (3) 0.6360 (2) 0.0589 (8)
H2 0.1851 0.4118 0.6877 0.071*
N3 0.3774 (3) 0.4339 (3) 0.8282 (2) 0.0594 (8)
N4 0.1372 (4) 0.7970 (5) 1.0691 (3) 0.0918 (13)
H3 0.1068 0.8344 1.1123 0.110*
N5 0.2018 (2) −0.0396 (3) 0.36023 (19) 0.0478 (7)
C1 0.2503 (3) 0.1457 (3) 0.4785 (2) 0.0438 (8)
C2 0.0775 (3) 0.2859 (4) 0.4814 (3) 0.0529 (9)
C3 0.1537 (3) 0.2655 (4) 0.5853 (2) 0.0513 (9)
C4 0.2866 (4) 0.4728 (4) 0.6038 (3) 0.0606 (10)
C5 0.3716 (4) 0.5658 (4) 0.6793 (3) 0.0626 (11)
H4 0.4299 0.6130 0.6487 0.075*
C6 0.4514 (4) 0.4756 (4) 0.7608 (3) 0.0710 (12)
H5 0.4799 0.3936 0.7338 0.085*
H6 0.5253 0.5270 0.7951 0.085*
C7 0.3456 (3) 0.5530 (4) 0.8811 (3) 0.0563 (10)
H7 0.4227 0.5813 0.9287 0.068*
C8 0.2471 (4) 0.5103 (4) 0.9358 (3) 0.0649 (11)
H8 0.1736 0.4707 0.8913 0.078*
H9 0.2830 0.4407 0.9834 0.078*
C9 0.2085 (4) 0.6349 (5) 0.9840 (3) 0.0637 (11)
C10 0.1623 (4) 0.6591 (6) 1.0624 (3) 0.0858 (14)
H10 0.1499 0.5914 1.1048 0.103*
C11 0.1678 (4) 0.8663 (5) 0.9949 (3) 0.0732 (12)
C12 0.2133 (3) 0.7655 (4) 0.9420 (3) 0.0573 (10)
C13 0.2523 (3) 0.7954 (4) 0.8593 (3) 0.0532 (9)
C14 0.3004 (3) 0.6764 (4) 0.8136 (2) 0.0487 (9)
C15 0.3054 (3) 0.6754 (4) 0.7218 (3) 0.0548 (9)
H11 0.2654 0.7467 0.6822 0.066*
C16 0.2457 (4) 0.9325 (4) 0.8304 (3) 0.0661 (11)
H12 0.2718 0.9580 0.7765 0.079*
C17 0.1988 (4) 1.0347 (4) 0.8837 (3) 0.0831 (14)
H13 0.1944 1.1262 0.8631 0.100*
C18 0.1594 (4) 1.0026 (6) 0.9656 (3) 0.0841 (15)
H14 0.1286 1.0705 0.9991 0.101*
C19 0.4491 (5) 0.3282 (5) 0.8935 (3) 0.0904 (14)
H15 0.4720 0.2545 0.8567 0.136*
H16 0.3980 0.2920 0.9326 0.136*
H17 0.5240 0.3690 0.9336 0.136*
C20 0.0706 (4) 0.1934 (5) 0.6393 (3) 0.0718 (11)
H18 0.0020 0.2532 0.6426 0.108*
H19 0.1195 0.1718 0.7030 0.108*
H20 0.0378 0.1095 0.6066 0.108*
C21 0.0681 (3) 0.1685 (4) 0.3258 (2) 0.0502 (9)
H21 −0.0208 0.1523 0.3235 0.060*
C22 0.1174 (3) 0.0328 (4) 0.2951 (3) 0.0507 (9)
C23 0.2471 (3) −0.0094 (4) 0.4643 (2) 0.0470 (8)
H22 0.1881 −0.0499 0.4973 0.056*
C24 0.3714 (4) −0.0875 (4) 0.4936 (3) 0.0651 (11)
H23 0.4400 −0.0325 0.4822 0.078*
H24 0.3914 −0.1134 0.5607 0.078*
C25 0.3467 (4) −0.2143 (4) 0.4293 (3) 0.0805 (13)
H25 0.3059 −0.2862 0.4573 0.097*
H26 0.4252 −0.2505 0.4202 0.097*
C26 0.2613 (4) −0.1660 (4) 0.3349 (3) 0.0577 (10)
H27 0.3097 −0.1456 0.2891 0.069*
H28 0.1984 −0.2355 0.3080 0.069*
C27 0.0694 (4) 0.2867 (4) 0.2538 (3) 0.0658 (11)
H29 0.0173 0.2584 0.1917 0.079*
H30 0.0296 0.3669 0.2737 0.079*
C28 0.1947 (4) 0.3310 (4) 0.2411 (2) 0.0551 (10)
C29 0.2512 (5) 0.2625 (5) 0.1781 (3) 0.0706 (12)
H31 0.2115 0.1859 0.1443 0.085*
C30 0.3658 (5) 0.3069 (5) 0.1651 (3) 0.0863 (15)
H32 0.4021 0.2597 0.1229 0.104*
C31 0.4258 (5) 0.4192 (6) 0.2138 (4) 0.0921 (15)
H33 0.5020 0.4494 0.2041 0.110*
C32 0.3729 (5) 0.4871 (5) 0.2769 (3) 0.0867 (13)
H34 0.4143 0.5624 0.3113 0.104*
C33 0.2586 (4) 0.4445 (4) 0.2899 (3) 0.0667 (11)
H35 0.2234 0.4927 0.3323 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0583 (15) 0.0628 (17) 0.0461 (14) 0.0085 (13) 0.0098 (12) −0.0074 (12)
O2 0.0457 (13) 0.0436 (13) 0.0695 (15) −0.0059 (11) 0.0167 (12) 0.0008 (12)
O3 0.0698 (18) 0.077 (2) 0.0795 (18) 0.0295 (17) 0.0199 (15) −0.0057 (16)
O4 0.127 (3) 0.0594 (17) 0.0620 (17) −0.0228 (17) 0.0460 (17) −0.0118 (14)
O5 0.0844 (19) 0.0737 (18) 0.0501 (15) 0.0090 (16) 0.0004 (14) −0.0174 (14)
N1 0.0429 (15) 0.0467 (16) 0.0466 (16) 0.0038 (14) 0.0095 (13) −0.0067 (14)
N2 0.078 (2) 0.0510 (18) 0.0569 (19) −0.0101 (16) 0.0347 (17) −0.0146 (15)
N3 0.0624 (19) 0.0521 (19) 0.0624 (19) 0.0094 (16) 0.0140 (16) −0.0056 (16)
N4 0.107 (3) 0.116 (4) 0.056 (2) 0.025 (3) 0.027 (2) −0.015 (2)
N5 0.0486 (16) 0.0409 (16) 0.0509 (16) 0.0013 (13) 0.0077 (13) −0.0074 (13)
C1 0.0418 (19) 0.0470 (19) 0.0424 (19) −0.0020 (16) 0.0107 (16) −0.0030 (15)
C2 0.053 (2) 0.046 (2) 0.062 (2) 0.0042 (19) 0.0190 (19) −0.0042 (18)
C3 0.057 (2) 0.047 (2) 0.053 (2) 0.0019 (18) 0.0218 (18) −0.0087 (17)
C4 0.080 (3) 0.051 (2) 0.058 (2) −0.008 (2) 0.031 (2) −0.013 (2)
C5 0.071 (3) 0.056 (2) 0.071 (3) −0.014 (2) 0.037 (2) −0.018 (2)
C6 0.059 (2) 0.065 (3) 0.093 (3) 0.000 (2) 0.026 (2) −0.021 (3)
C7 0.054 (2) 0.056 (2) 0.054 (2) 0.0060 (19) 0.0054 (18) −0.0090 (18)
C8 0.069 (3) 0.064 (3) 0.061 (2) 0.001 (2) 0.016 (2) 0.004 (2)
C9 0.061 (2) 0.082 (3) 0.047 (2) 0.008 (2) 0.012 (2) −0.001 (2)
C10 0.095 (3) 0.109 (4) 0.054 (3) 0.013 (3) 0.022 (3) 0.004 (3)
C11 0.073 (3) 0.093 (4) 0.047 (2) 0.014 (3) 0.005 (2) −0.017 (2)
C12 0.053 (2) 0.070 (3) 0.044 (2) 0.005 (2) 0.0044 (18) −0.014 (2)
C13 0.051 (2) 0.053 (2) 0.051 (2) 0.0027 (18) 0.0046 (17) −0.0153 (18)
C14 0.0437 (19) 0.052 (2) 0.049 (2) −0.0028 (17) 0.0092 (16) −0.0082 (17)
C15 0.060 (2) 0.048 (2) 0.058 (2) −0.0043 (18) 0.0192 (19) −0.0085 (18)
C16 0.071 (3) 0.064 (3) 0.060 (2) 0.005 (2) 0.013 (2) −0.012 (2)
C17 0.100 (3) 0.059 (3) 0.081 (3) 0.017 (2) 0.007 (3) −0.021 (2)
C18 0.094 (3) 0.094 (4) 0.056 (3) 0.025 (3) 0.005 (2) −0.033 (3)
C19 0.091 (3) 0.070 (3) 0.100 (3) 0.023 (3) 0.006 (3) 0.006 (3)
C20 0.083 (3) 0.067 (3) 0.074 (3) −0.011 (2) 0.036 (2) −0.003 (2)
C21 0.0438 (19) 0.050 (2) 0.053 (2) 0.0042 (17) 0.0063 (16) −0.0035 (17)
C22 0.047 (2) 0.051 (2) 0.052 (2) 0.0033 (17) 0.0077 (17) −0.0039 (17)
C23 0.0468 (19) 0.0442 (18) 0.050 (2) 0.0003 (16) 0.0123 (16) −0.0009 (16)
C24 0.068 (3) 0.049 (2) 0.070 (2) 0.009 (2) 0.003 (2) 0.001 (2)
C25 0.085 (3) 0.056 (2) 0.089 (3) 0.018 (2) 0.003 (2) −0.012 (2)
C26 0.059 (2) 0.047 (2) 0.070 (2) 0.0059 (19) 0.021 (2) −0.0106 (19)
C27 0.072 (3) 0.068 (3) 0.053 (2) 0.023 (2) 0.007 (2) 0.002 (2)
C28 0.067 (3) 0.050 (2) 0.046 (2) 0.0169 (19) 0.0103 (19) 0.0089 (18)
C29 0.093 (3) 0.065 (3) 0.058 (2) 0.014 (3) 0.028 (2) −0.003 (2)
C30 0.116 (4) 0.075 (3) 0.081 (3) 0.034 (3) 0.049 (3) 0.013 (3)
C31 0.085 (3) 0.084 (4) 0.117 (4) 0.019 (3) 0.044 (3) 0.031 (3)
C32 0.091 (4) 0.070 (3) 0.094 (3) 0.001 (3) 0.015 (3) 0.003 (3)
C33 0.086 (3) 0.055 (3) 0.060 (2) 0.010 (2) 0.022 (2) −0.001 (2)

Geometric parameters (Å, º)

O1—C1 1.435 (4) C13—C16 1.385 (5)
O1—C3 1.451 (4) C13—C14 1.490 (5)
O2—C1 1.388 (4) C14—C15 1.340 (5)
O2—H1 0.8201 C15—H11 0.9300
O3—C2 1.229 (4) C16—C17 1.428 (6)
O4—C4 1.230 (4) C16—H12 0.9300
O5—C22 1.246 (4) C17—C18 1.396 (6)
N1—C2 1.353 (4) C17—H13 0.9300
N1—C1 1.458 (4) C18—H14 0.9300
N1—C21 1.474 (4) C19—H15 0.9600
N2—C4 1.367 (5) C19—H16 0.9600
N2—C3 1.444 (4) C19—H17 0.9600
N2—H2 0.8600 C20—H18 0.9600
N3—C19 1.472 (5) C20—H19 0.9600
N3—C7 1.472 (4) C20—H20 0.9600
N3—C6 1.477 (5) C21—C22 1.527 (5)
N4—C10 1.369 (6) C21—C27 1.547 (5)
N4—C11 1.378 (6) C21—H21 0.9800
N4—H3 0.8600 C23—C24 1.519 (5)
N5—C22 1.334 (4) C23—H22 0.9800
N5—C26 1.475 (4) C24—C25 1.519 (6)
N5—C23 1.485 (4) C24—H23 0.9700
C1—C23 1.512 (5) C24—H24 0.9700
C2—C3 1.529 (5) C25—C26 1.514 (5)
C3—C20 1.515 (5) C25—H25 0.9700
C4—C5 1.530 (5) C25—H26 0.9700
C5—C15 1.503 (5) C26—H27 0.9700
C5—C6 1.542 (6) C26—H28 0.9700
C5—H4 0.9800 C27—C28 1.495 (5)
C6—H5 0.9700 C27—H29 0.9700
C6—H6 0.9700 C27—H30 0.9700
C7—C14 1.539 (5) C28—C33 1.391 (5)
C7—C8 1.552 (5) C28—C29 1.395 (5)
C7—H7 0.9800 C29—C30 1.387 (6)
C8—C9 1.506 (5) C29—H31 0.9300
C8—H8 0.9700 C30—C31 1.366 (7)
C8—H9 0.9700 C30—H32 0.9300
C9—C10 1.376 (5) C31—C32 1.370 (6)
C9—C12 1.407 (6) C31—H33 0.9300
C10—H10 0.9300 C32—C33 1.378 (6)
C11—C18 1.379 (7) C32—H34 0.9300
C11—C12 1.406 (5) C33—H35 0.9300
C12—C13 1.400 (5)
C1—O1—C3 111.6 (2) C5—C15—H11 118.1
C1—O2—H1 109.5 C13—C16—C17 119.8 (4)
C2—N1—C1 112.7 (3) C13—C16—H12 120.1
C2—N1—C21 124.1 (3) C17—C16—H12 120.1
C1—N1—C21 122.8 (3) C18—C17—C16 122.5 (4)
C4—N2—C3 121.4 (3) C18—C17—H13 118.7
C4—N2—H2 119.3 C16—C17—H13 118.7
C3—N2—H2 119.4 C11—C18—C17 117.5 (4)
C19—N3—C7 111.6 (3) C11—C18—H14 121.3
C19—N3—C6 108.5 (3) C17—C18—H14 121.3
C7—N3—C6 112.0 (3) N3—C19—H15 109.5
C10—N4—C11 108.9 (4) N3—C19—H16 109.5
C10—N4—H3 125.7 H15—C19—H16 109.5
C11—N4—H3 125.5 N3—C19—H17 109.5
C22—N5—C26 122.0 (3) H15—C19—H17 109.5
C22—N5—C23 126.8 (3) H16—C19—H17 109.5
C26—N5—C23 111.1 (3) C3—C20—H18 109.5
O2—C1—O1 111.5 (3) C3—C20—H19 109.5
O2—C1—N1 112.8 (3) H18—C20—H19 109.5
O1—C1—N1 104.0 (2) C3—C20—H20 109.5
O2—C1—C23 109.2 (3) H18—C20—H20 109.5
O1—C1—C23 109.5 (3) H19—C20—H20 109.5
N1—C1—C23 109.8 (3) N1—C21—C22 112.7 (3)
O3—C2—N1 126.2 (3) N1—C21—C27 113.2 (3)
O3—C2—C3 126.1 (3) C22—C21—C27 111.9 (3)
N1—C2—C3 107.5 (3) N1—C21—H21 106.1
N2—C3—O1 108.9 (3) C22—C21—H21 106.1
N2—C3—C20 109.3 (3) C27—C21—H21 106.1
O1—C3—C20 110.9 (3) O5—C22—N5 122.3 (3)
N2—C3—C2 115.7 (3) O5—C22—C21 119.1 (3)
O1—C3—C2 103.4 (3) N5—C22—C21 118.6 (3)
C20—C3—C2 108.5 (3) N5—C23—C1 108.8 (3)
O4—C4—N2 122.1 (3) N5—C23—C24 103.0 (3)
O4—C4—C5 122.2 (4) C1—C23—C24 117.8 (3)
N2—C4—C5 115.7 (3) N5—C23—H22 108.9
C15—C5—C4 115.8 (3) C1—C23—H22 108.9
C15—C5—C6 109.0 (3) C24—C23—H22 108.9
C4—C5—C6 109.4 (3) C25—C24—C23 103.0 (3)
C15—C5—H4 107.4 C25—C24—H23 111.2
C4—C5—H4 107.4 C23—C24—H23 111.2
C6—C5—H4 107.4 C25—C24—H24 111.2
N3—C6—C5 110.9 (3) C23—C24—H24 111.2
N3—C6—H5 109.5 H23—C24—H24 109.1
C5—C6—H5 109.5 C24—C25—C26 105.8 (3)
N3—C6—H6 109.5 C24—C25—H25 110.6
C5—C6—H6 109.5 C26—C25—H25 110.6
H5—C6—H6 108.0 C24—C25—H26 110.6
N3—C7—C14 110.9 (3) C26—C25—H26 110.6
N3—C7—C8 110.3 (3) H25—C25—H26 108.7
C14—C7—C8 112.1 (3) N5—C26—C25 104.0 (3)
N3—C7—H7 107.8 N5—C26—H27 111.0
C14—C7—H7 107.8 C25—C26—H27 111.0
C8—C7—H7 107.8 N5—C26—H28 111.0
C9—C8—C7 109.9 (3) C25—C26—H28 111.0
C9—C8—H8 109.7 H27—C26—H28 109.0
C7—C8—H8 109.7 C28—C27—C21 117.6 (3)
C9—C8—H9 109.7 C28—C27—H29 107.9
C7—C8—H9 109.7 C21—C27—H29 107.9
H8—C8—H9 108.2 C28—C27—H30 107.9
C10—C9—C12 105.4 (4) C21—C27—H30 107.9
C10—C9—C8 136.4 (4) H29—C27—H30 107.2
C12—C9—C8 118.1 (3) C33—C28—C29 117.0 (4)
N4—C10—C9 110.3 (4) C33—C28—C27 121.5 (4)
N4—C10—H10 124.8 C29—C28—C27 121.5 (4)
C9—C10—H10 124.8 C30—C29—C28 121.0 (4)
N4—C11—C18 133.8 (4) C30—C29—H31 119.5
N4—C11—C12 106.2 (4) C28—C29—H31 119.5
C18—C11—C12 120.0 (4) C31—C30—C29 120.6 (5)
C13—C12—C11 123.4 (4) C31—C30—H32 119.7
C13—C12—C9 127.4 (3) C29—C30—H32 119.7
C11—C12—C9 109.2 (4) C30—C31—C32 119.5 (5)
C16—C13—C12 116.8 (3) C30—C31—H33 120.3
C16—C13—C14 127.0 (3) C32—C31—H33 120.3
C12—C13—C14 116.2 (3) C31—C32—C33 120.4 (5)
C15—C14—C13 123.6 (3) C31—C32—H34 119.8
C15—C14—C7 122.2 (3) C33—C32—H34 119.8
C13—C14—C7 114.2 (3) C32—C33—C28 121.6 (4)
C14—C15—C5 123.9 (4) C32—C33—H35 119.2
C14—C15—H11 118.1 C28—C33—H35 119.2
C3—O1—C1—O2 115.5 (3) C9—C12—C13—C14 −3.5 (5)
C3—O1—C1—N1 −6.4 (3) C16—C13—C14—C15 −23.1 (6)
C3—O1—C1—C23 −123.6 (3) C12—C13—C14—C15 159.1 (3)
C2—N1—C1—O2 −111.3 (3) C16—C13—C14—C7 156.5 (4)
C21—N1—C1—O2 75.9 (4) C12—C13—C14—C7 −21.3 (4)
C2—N1—C1—O1 9.6 (4) N3—C7—C14—C15 −7.1 (5)
C21—N1—C1—O1 −163.2 (3) C8—C7—C14—C15 −130.9 (4)
C2—N1—C1—C23 126.7 (3) N3—C7—C14—C13 173.2 (3)
C21—N1—C1—C23 −46.1 (4) C8—C7—C14—C13 49.5 (4)
C1—N1—C2—O3 176.7 (4) C13—C14—C15—C5 170.2 (3)
C21—N1—C2—O3 −10.6 (6) C7—C14—C15—C5 −9.4 (5)
C1—N1—C2—C3 −8.9 (4) C4—C5—C15—C14 113.1 (4)
C21—N1—C2—C3 163.8 (3) C6—C5—C15—C14 −10.7 (5)
C4—N2—C3—O1 56.9 (4) C12—C13—C16—C17 −1.0 (5)
C4—N2—C3—C20 178.3 (3) C14—C13—C16—C17 −178.8 (4)
C4—N2—C3—C2 −59.0 (5) C13—C16—C17—C18 0.5 (6)
C1—O1—C3—N2 −122.1 (3) N4—C11—C18—C17 −178.9 (4)
C1—O1—C3—C20 117.6 (3) C12—C11—C18—C17 −0.8 (7)
C1—O1—C3—C2 1.5 (4) C16—C17—C18—C11 0.5 (7)
O3—C2—C3—N2 −62.1 (5) C2—N1—C21—C22 −154.1 (3)
N1—C2—C3—N2 123.5 (3) C1—N1—C21—C22 17.9 (4)
O3—C2—C3—O1 178.9 (4) C2—N1—C21—C27 77.7 (4)
N1—C2—C3—O1 4.5 (4) C1—N1—C21—C27 −110.3 (3)
O3—C2—C3—C20 61.1 (5) C26—N5—C22—O5 4.5 (5)
N1—C2—C3—C20 −113.3 (3) C23—N5—C22—O5 −174.5 (3)
C3—N2—C4—O4 19.6 (6) C26—N5—C22—C21 −175.2 (3)
C3—N2—C4—C5 −157.6 (3) C23—N5—C22—C21 5.7 (5)
O4—C4—C5—C15 117.7 (4) N1—C21—C22—O5 −175.5 (3)
N2—C4—C5—C15 −65.1 (5) C27—C21—C22—O5 −46.7 (4)
O4—C4—C5—C6 −118.7 (4) N1—C21—C22—N5 4.2 (4)
N2—C4—C5—C6 58.5 (4) C27—C21—C22—N5 133.1 (3)
C19—N3—C6—C5 169.6 (3) C22—N5—C23—C1 −33.7 (4)
C7—N3—C6—C5 −66.7 (4) C26—N5—C23—C1 147.2 (3)
C15—C5—C6—N3 47.1 (4) C22—N5—C23—C24 −159.5 (3)
C4—C5—C6—N3 −80.4 (4) C26—N5—C23—C24 21.4 (4)
C19—N3—C7—C14 166.1 (3) O2—C1—C23—N5 −74.8 (3)
C6—N3—C7—C14 44.2 (4) O1—C1—C23—N5 162.9 (2)
C19—N3—C7—C8 −69.1 (4) N1—C1—C23—N5 49.3 (3)
C6—N3—C7—C8 169.0 (3) O2—C1—C23—C24 41.9 (4)
N3—C7—C8—C9 −176.1 (3) O1—C1—C23—C24 −80.4 (4)
C14—C7—C8—C9 −52.0 (4) N1—C1—C23—C24 166.0 (3)
C7—C8—C9—C10 −154.0 (5) N5—C23—C24—C25 −33.9 (4)
C7—C8—C9—C12 28.8 (5) C1—C23—C24—C25 −153.6 (3)
C11—N4—C10—C9 −0.5 (6) C23—C24—C25—C26 35.2 (4)
C12—C9—C10—N4 0.9 (5) C22—N5—C26—C25 −178.9 (3)
C8—C9—C10—N4 −176.5 (4) C23—N5—C26—C25 0.2 (4)
C10—N4—C11—C18 178.1 (5) C24—C25—C26—N5 −22.0 (4)
C10—N4—C11—C12 −0.1 (5) N1—C21—C27—C28 65.2 (4)
N4—C11—C12—C13 178.8 (3) C22—C21—C27—C28 −63.3 (4)
C18—C11—C12—C13 0.2 (6) C21—C27—C28—C33 −96.9 (4)
N4—C11—C12—C9 0.7 (5) C21—C27—C28—C29 84.6 (4)
C18—C11—C12—C9 −177.8 (4) C33—C28—C29—C30 −0.2 (5)
C10—C9—C12—C13 −179.0 (4) C27—C28—C29—C30 178.3 (4)
C8—C9—C12—C13 −1.0 (6) C28—C29—C30—C31 −0.1 (6)
C10—C9—C12—C11 −1.0 (4) C29—C30—C31—C32 1.0 (7)
C8—C9—C12—C11 177.0 (3) C30—C31—C32—C33 −1.4 (7)
C11—C12—C13—C16 0.7 (5) C31—C32—C33—C28 1.1 (6)
C9—C12—C13—C16 178.4 (4) C29—C28—C33—C32 −0.2 (5)
C11—C12—C13—C14 178.7 (3) C27—C28—C33—C32 −178.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N3 0.86 2.53 2.955 (4) 112
N4—H3···O5i 0.86 2.17 2.981 (5) 157

Symmetry code: (i) x, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2173).

References

  1. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Crews, C., Anderson, W. A. C., Rees, G. & Krska, R. (2009). Food Addit. Contam. Part B, 2, 79–85. [DOI] [PubMed]
  4. Komarova, E. L. & Tolkachev, O. N. (2001). Pharm. Chem. J. 35, 37–45.
  5. Merkel, S., Köppen, R., Koch, M., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o2275. [DOI] [PMC free article] [PubMed]
  6. Müller, C., Kemmlein, S., Klaffke, H., Krauthause, W., Preiss-Weigert, A. & Wittkowski, R. (2009). Mol. Nutr. Food Res. 53, 500–507. [DOI] [PubMed]
  7. Pakhomova, S., Ondráucek, J., Huusák, M., Kratochvíl, B., Jegorov, A. & Stuchlík, J. (1995). Acta Cryst. C51, 308–311.
  8. Pierri, L., Pitman, I. H., Rae, I. D., Winkler, D. A. & Andrews, P. R. (1982). J. Med. Chem. 25, 937–942. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stoll, A. (1945). Helv. Chim. Acta, 28, 1283–1308.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003674/ds2173sup1.cif

e-68-0o610-sup1.cif (39.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003674/ds2173Isup2.hkl

e-68-0o610-Isup2.hkl (136.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812003674/ds2173Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES