Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):o648. doi: 10.1107/S1600536812004643

Dicyclo­hex­yl(4-isopropyl­phen­yl)phosphane selenide

Sizwe Makhoba a, Alfred Muller a,*, Zanele Phasha a
PMCID: PMC3295440  PMID: 22412551

Abstract

In the title compund, C21H33PSe, the Se=P bond is part of a distorted tetra­hedral environment on the P atom. Both cyclo­hexyl groups adopt chair conformations. A cone angle of 170° was calculated using an adaptation of the Tolman model. Inter­molecular C—H⋯Se and C—H⋯Cg contacts are observed (Cg is the centroid of the benzene ring).

Related literature  

For background studies aimed at understanding the transition metal–phospho­rus bond, see: Muller et al. (2008); Roodt et al. (2003). For transition metal complexes with PCy2(4-iPr—C6H4), see: Makhoba et al. (2011); Vuba & Muller (2012). For background to cone angles, see: Tolman (1977).graphic file with name e-68-0o648-scheme1.jpg

Experimental  

Crystal data  

  • C21H33PSe

  • M r = 395.4

  • Monoclinic, Inline graphic

  • a = 13.1311 (10) Å

  • b = 13.6991 (10) Å

  • c = 11.7821 (8) Å

  • β = 103.106 (2)°

  • V = 2064.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 100 K

  • 0.22 × 0.14 × 0.1 mm

Data collection  

  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.681, T max = 0.833

  • 28000 measured reflections

  • 5140 independent reflections

  • 4397 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.057

  • S = 1.02

  • 5140 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004643/kp2386sup1.cif

e-68-0o648-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004643/kp2386Isup2.hkl

e-68-0o648-Isup2.hkl (246.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004643/kp2386Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Se1i 1.00 3.09 4.0500 (14) 162
C9—H9BCg1ii 0.99 2.81 3.6471 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Research funding from the University of Johannesburg is gratefully acknowledged.

supplementary crystallographic information

Comment

The bonding of phosphorus to transitional metals have being investigated extensively, with several attempts to divide the properties of the phosphorus ligand into steric and electronic effects. Various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt et al., 2003) have been used to this extent. Recently we have also included selenium derivatives of the phosphorus compounds into this study (Muller et al., 2008). This route seems viable as the use of expensive transition metals and steric influence from other ligands in the coordination sphere are eliminated, leaving only crystal packing effects as an additional influence on the steric property of the phosphorus ligand. As part of this investigation we report here the selenium derivative of PCy2(4-iPr—C6H4) where Cy = cyclohexyl and iPr = isopropyl.

Molecules of the title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P—C and Se—P—C angles of 106.0° and 112.7° respectively. The cone angle was found to be 170° when the Se—P distance was adjusted to 2.28 Å (the default value from Tolman, 1977). This value is ca 5° larger than previous reported values where the present phosphine was bonded to a transition metal centre (Makhoba et al., 2011; Vuba & Muller, 2012). This indicates to some extend the flexibility of this phosphine ligand and its ability to use space to enable less crowding of its substituents. Weak intermolecular C—H···Se and C—H···Cg contacts are observed (Table 1, Fig. 2) and link the molecules as infinite chains in the [001] direction.

Experimental

KSeCN (10 mg, 0.0694 mmol) and PCy2(4-iPr—C6H4) (21.96 mg, 0.0694 mmol) were both dissolved in a minimum amount of methanol (10–20 ml). The KSeCN solution was added drop wise (5 min) to the phosphine solution while stirring at room temperature. The final solution was left to evaporate slowly in order to give crystals that are suitable for single-crystal X-ray study.

Refinement

All H atoms were positioned in geometrically idealised positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively and constrained to ride on their parents atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl H atoms were located from a Fourier difference map and refined as fixed rotor. The highest residual electron density of 0.41 e Å-3 was located 0.76 Å from C19, and the deepest hole of -0.24 e Å-3 is 0.81 Å from P1. Both represent no physical meaning.

Figures

Fig. 1.

Fig. 1.

A view of the title compound showing the numbering scheme of atoms and displacement ellipsoids (drawn at the 50% probability level). H atoms omitted for clarity.

Fig. 2.

Fig. 2.

Packing diagram showing the interactions observed for the structure.

Crystal data

C21H33PSe F(000) = 832
Mr = 395.4 Dx = 1.272 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8561 reflections
a = 13.1311 (10) Å θ = 2.3–28.2°
b = 13.6991 (10) Å µ = 1.90 mm1
c = 11.7821 (8) Å T = 100 K
β = 103.106 (2)° Cuboid, colourless
V = 2064.2 (3) Å3 0.22 × 0.14 × 0.1 mm
Z = 4

Data collection

Bruker APEX DUO 4K CCD diffractometer 5140 independent reflections
Graphite monochromator 4397 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1 Rint = 0.040
φ and ω scans θmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −17→17
Tmin = 0.681, Tmax = 0.833 k = −18→18
28000 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.6415P] where P = (Fo2 + 2Fc2)/3
5140 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4K CCD diffractometer using an exposure time of 10 s/frame. A total of 5967 frames were collected with a frame width of 0.5° covering up to θ = 28.31° with 100% completeness accomplished.Analytical data: 31P {H} NMR (CDCl3, 160 MHz): δ = 54.1 (s, 1P)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.63459 (3) 0.16154 (3) 0.07287 (3) 0.01280 (8)
Se1 0.589654 (11) 0.097347 (10) 0.218666 (12) 0.01702 (5)
C1 0.53424 (10) 0.24106 (10) −0.01384 (12) 0.0147 (3)
H1 0.564 0.2718 −0.0762 0.018*
C2 0.43736 (11) 0.18232 (11) −0.07302 (13) 0.0193 (3)
H2A 0.4569 0.1344 −0.1272 0.023*
H2B 0.4107 0.1458 −0.0132 0.023*
C3 0.35114 (11) 0.24925 (11) −0.14041 (14) 0.0228 (3)
H3A 0.375 0.2799 −0.206 0.027*
H3B 0.2881 0.2099 −0.1733 0.027*
C4 0.32313 (12) 0.32877 (12) −0.06224 (15) 0.0239 (3)
H4A 0.2693 0.3722 −0.1089 0.029*
H4B 0.2936 0.2985 −0.0005 0.029*
C5 0.41921 (12) 0.38870 (11) −0.00652 (14) 0.0222 (3)
H5A 0.3998 0.4382 0.046 0.027*
H5B 0.4452 0.4234 −0.068 0.027*
C6 0.50595 (11) 0.32336 (11) 0.06286 (13) 0.0193 (3)
H6A 0.4826 0.2944 0.1296 0.023*
H6B 0.5688 0.3634 0.0942 0.023*
C7 0.66780 (10) 0.06797 (10) −0.02535 (12) 0.0139 (3)
H7 0.6056 0.0244 −0.0499 0.017*
C8 0.69309 (11) 0.11074 (10) −0.13626 (13) 0.0174 (3)
H8A 0.6317 0.1473 −0.1804 0.021*
H8B 0.7523 0.157 −0.1145 0.021*
C9 0.72156 (12) 0.02992 (11) −0.21352 (13) 0.0198 (3)
H9A 0.6606 −0.0136 −0.24 0.024*
H9B 0.7393 0.0594 −0.2833 0.024*
C10 0.81410 (12) −0.02969 (11) −0.14730 (13) 0.0205 (3)
H10A 0.8764 0.0128 −0.1253 0.025*
H10B 0.8301 −0.0824 −0.1981 0.025*
C11 0.78950 (12) −0.07406 (11) −0.03796 (13) 0.0206 (3)
H11A 0.8515 −0.11 0.0058 0.025*
H11B 0.7313 −0.1213 −0.0606 0.025*
C12 0.75906 (11) 0.00468 (10) 0.04060 (12) 0.0173 (3)
H12A 0.8203 0.0469 0.0712 0.021*
H12B 0.7388 −0.0269 0.1078 0.021*
C13 0.75153 (10) 0.23630 (10) 0.11383 (12) 0.0137 (3)
C14 0.77795 (11) 0.30400 (10) 0.03631 (12) 0.0159 (3)
H14 0.7302 0.3173 −0.0356 0.019*
C15 0.87363 (11) 0.35183 (10) 0.06399 (13) 0.0171 (3)
H15 0.8906 0.3976 0.0106 0.021*
C16 0.94567 (10) 0.33377 (10) 0.16937 (12) 0.0160 (3)
C17 0.91711 (11) 0.26870 (10) 0.24719 (13) 0.0167 (3)
H17 0.9639 0.2567 0.3201 0.02*
C18 0.82115 (11) 0.22069 (10) 0.22028 (12) 0.0150 (3)
H18 0.8031 0.1769 0.2751 0.018*
C19 1.05187 (11) 0.38265 (11) 0.19607 (13) 0.0193 (3)
H19 1.0879 0.3646 0.2775 0.023*
C20 1.11914 (12) 0.34511 (13) 0.11461 (15) 0.0278 (4)
H20A 1.1266 0.2741 0.1225 0.042*
H20B 1.1884 0.3757 0.1354 0.042*
H20C 1.0855 0.3616 0.0339 0.042*
C21 1.04331 (12) 0.49378 (11) 0.19028 (14) 0.0241 (3)
H21A 1.0042 0.5134 0.1126 0.036*
H21B 1.1135 0.5223 0.2055 0.036*
H21C 1.0068 0.5169 0.249 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01478 (16) 0.01252 (16) 0.01143 (17) −0.00245 (12) 0.00365 (13) −0.00016 (13)
Se1 0.02188 (8) 0.01700 (8) 0.01373 (8) −0.00395 (6) 0.00727 (5) 0.00076 (5)
C1 0.0143 (6) 0.0151 (7) 0.0144 (7) −0.0018 (5) 0.0029 (5) 0.0004 (5)
C2 0.0165 (6) 0.0179 (7) 0.0223 (8) −0.0026 (5) 0.0017 (6) −0.0022 (6)
C3 0.0170 (7) 0.0237 (8) 0.0247 (8) −0.0027 (6) −0.0014 (6) 0.0017 (6)
C4 0.0187 (7) 0.0245 (8) 0.0288 (9) 0.0034 (6) 0.0064 (6) 0.0064 (7)
C5 0.0246 (7) 0.0176 (7) 0.0244 (8) 0.0027 (6) 0.0054 (6) 0.0019 (6)
C6 0.0215 (7) 0.0169 (7) 0.0191 (8) 0.0009 (5) 0.0040 (6) −0.0019 (6)
C7 0.0162 (6) 0.0125 (6) 0.0130 (7) −0.0018 (5) 0.0037 (5) −0.0012 (5)
C8 0.0224 (7) 0.0164 (7) 0.0142 (7) 0.0010 (5) 0.0060 (6) 0.0011 (5)
C9 0.0278 (7) 0.0193 (7) 0.0135 (7) 0.0011 (6) 0.0075 (6) 0.0000 (6)
C10 0.0236 (7) 0.0199 (7) 0.0200 (8) 0.0008 (6) 0.0092 (6) −0.0022 (6)
C11 0.0261 (7) 0.0176 (7) 0.0195 (8) 0.0038 (6) 0.0082 (6) 0.0008 (6)
C12 0.0211 (7) 0.0179 (7) 0.0131 (7) 0.0024 (5) 0.0041 (5) 0.0019 (5)
C13 0.0150 (6) 0.0127 (6) 0.0134 (7) −0.0014 (5) 0.0037 (5) −0.0030 (5)
C14 0.0177 (6) 0.0173 (7) 0.0118 (7) −0.0018 (5) 0.0011 (5) 0.0003 (5)
C15 0.0199 (7) 0.0169 (7) 0.0149 (7) −0.0044 (5) 0.0047 (5) 0.0020 (5)
C16 0.0155 (6) 0.0151 (6) 0.0168 (7) −0.0019 (5) 0.0027 (5) −0.0030 (5)
C17 0.0173 (6) 0.0170 (7) 0.0145 (7) 0.0005 (5) 0.0009 (5) −0.0002 (5)
C18 0.0191 (6) 0.0125 (6) 0.0136 (7) 0.0005 (5) 0.0044 (5) 0.0003 (5)
C19 0.0165 (6) 0.0234 (8) 0.0165 (7) −0.0047 (6) 0.0010 (5) 0.0004 (6)
C20 0.0186 (7) 0.0364 (9) 0.0290 (9) 0.0006 (6) 0.0064 (6) −0.0011 (7)
C21 0.0236 (7) 0.0239 (8) 0.0243 (8) −0.0089 (6) 0.0045 (6) −0.0019 (6)

Geometric parameters (Å, º)

P1—C13 1.8176 (13) C9—H9B 0.99
P1—C1 1.8321 (14) C10—C11 1.524 (2)
P1—C7 1.8442 (14) C10—H10A 0.99
P1—Se1 2.1288 (4) C10—H10B 0.99
C1—C2 1.5329 (18) C11—C12 1.532 (2)
C1—C6 1.5421 (19) C11—H11A 0.99
C1—H1 1 C11—H11B 0.99
C2—C3 1.531 (2) C12—H12A 0.99
C2—H2A 0.99 C12—H12B 0.99
C2—H2B 0.99 C13—C18 1.3908 (19)
C3—C4 1.524 (2) C13—C14 1.3994 (19)
C3—H3A 0.99 C14—C15 1.3886 (19)
C3—H3B 0.99 C14—H14 0.95
C4—C5 1.524 (2) C15—C16 1.4018 (19)
C4—H4A 0.99 C15—H15 0.95
C4—H4B 0.99 C16—C17 1.390 (2)
C5—C6 1.531 (2) C16—C19 1.5143 (19)
C5—H5A 0.99 C17—C18 1.3928 (19)
C5—H5B 0.99 C17—H17 0.95
C6—H6A 0.99 C18—H18 0.95
C6—H6B 0.99 C19—C21 1.527 (2)
C7—C8 1.536 (2) C19—C20 1.533 (2)
C7—C12 1.5392 (19) C19—H19 1
C7—H7 1 C20—H20A 0.98
C8—C9 1.533 (2) C20—H20B 0.98
C8—H8A 0.99 C20—H20C 0.98
C8—H8B 0.99 C21—H21A 0.98
C9—C10 1.524 (2) C21—H21B 0.98
C9—H9A 0.99 C21—H21C 0.98
C13—P1—C1 105.70 (6) C10—C9—H9B 109.5
C13—P1—C7 104.63 (6) C8—C9—H9B 109.5
C1—P1—C7 107.81 (6) H9A—C9—H9B 108
C13—P1—Se1 112.99 (5) C9—C10—C11 110.45 (12)
C1—P1—Se1 113.56 (5) C9—C10—H10A 109.6
C7—P1—Se1 111.56 (5) C11—C10—H10A 109.6
C2—C1—C6 111.41 (11) C9—C10—H10B 109.6
C2—C1—P1 111.05 (10) C11—C10—H10B 109.6
C6—C1—P1 110.26 (10) H10A—C10—H10B 108.1
C2—C1—H1 108 C10—C11—C12 111.36 (12)
C6—C1—H1 108 C10—C11—H11A 109.4
P1—C1—H1 108 C12—C11—H11A 109.4
C3—C2—C1 111.18 (12) C10—C11—H11B 109.4
C3—C2—H2A 109.4 C12—C11—H11B 109.4
C1—C2—H2A 109.4 H11A—C11—H11B 108
C3—C2—H2B 109.4 C11—C12—C7 111.80 (12)
C1—C2—H2B 109.4 C11—C12—H12A 109.3
H2A—C2—H2B 108 C7—C12—H12A 109.3
C4—C3—C2 111.46 (13) C11—C12—H12B 109.3
C4—C3—H3A 109.3 C7—C12—H12B 109.3
C2—C3—H3A 109.3 H12A—C12—H12B 107.9
C4—C3—H3B 109.3 C18—C13—C14 118.74 (12)
C2—C3—H3B 109.3 C18—C13—P1 119.72 (11)
H3A—C3—H3B 108 C14—C13—P1 121.31 (10)
C5—C4—C3 110.84 (12) C15—C14—C13 120.29 (13)
C5—C4—H4A 109.5 C15—C14—H14 119.9
C3—C4—H4A 109.5 C13—C14—H14 119.9
C5—C4—H4B 109.5 C14—C15—C16 121.17 (13)
C3—C4—H4B 109.5 C14—C15—H15 119.4
H4A—C4—H4B 108.1 C16—C15—H15 119.4
C4—C5—C6 110.98 (12) C17—C16—C15 117.95 (13)
C4—C5—H5A 109.4 C17—C16—C19 121.34 (13)
C6—C5—H5A 109.4 C15—C16—C19 120.70 (13)
C4—C5—H5B 109.4 C16—C17—C18 121.21 (13)
C6—C5—H5B 109.4 C16—C17—H17 119.4
H5A—C5—H5B 108 C18—C17—H17 119.4
C5—C6—C1 111.31 (12) C13—C18—C17 120.56 (13)
C5—C6—H6A 109.4 C13—C18—H18 119.7
C1—C6—H6A 109.4 C17—C18—H18 119.7
C5—C6—H6B 109.4 C16—C19—C21 112.13 (12)
C1—C6—H6B 109.4 C16—C19—C20 110.84 (12)
H6A—C6—H6B 108 C21—C19—C20 110.70 (13)
C8—C7—C12 110.53 (11) C16—C19—H19 107.7
C8—C7—P1 113.34 (9) C21—C19—H19 107.7
C12—C7—P1 110.03 (9) C20—C19—H19 107.7
C8—C7—H7 107.6 C19—C20—H20A 109.5
C12—C7—H7 107.6 C19—C20—H20B 109.5
P1—C7—H7 107.6 H20A—C20—H20B 109.5
C9—C8—C7 111.02 (11) C19—C20—H20C 109.5
C9—C8—H8A 109.4 H20A—C20—H20C 109.5
C7—C8—H8A 109.4 H20B—C20—H20C 109.5
C9—C8—H8B 109.4 C19—C21—H21A 109.5
C7—C8—H8B 109.4 C19—C21—H21B 109.5
H8A—C8—H8B 108 H21A—C21—H21B 109.5
C10—C9—C8 110.89 (12) C19—C21—H21C 109.5
C10—C9—H9A 109.5 H21A—C21—H21C 109.5
C8—C9—H9A 109.5 H21B—C21—H21C 109.5
C13—P1—C1—C2 169.50 (10) C9—C10—C11—C12 −56.47 (16)
C7—P1—C1—C2 58.04 (11) C10—C11—C12—C7 54.94 (16)
Se1—P1—C1—C2 −66.09 (11) C8—C7—C12—C11 −53.92 (15)
C13—P1—C1—C6 −66.51 (11) P1—C7—C12—C11 −179.86 (10)
C7—P1—C1—C6 −177.97 (9) C1—P1—C13—C18 147.20 (11)
Se1—P1—C1—C6 57.90 (10) C7—P1—C13—C18 −99.12 (12)
C6—C1—C2—C3 53.72 (17) Se1—P1—C13—C18 22.43 (13)
P1—C1—C2—C3 177.05 (10) C1—P1—C13—C14 −38.34 (13)
C1—C2—C3—C4 −55.38 (17) C7—P1—C13—C14 75.35 (13)
C2—C3—C4—C5 57.02 (17) Se1—P1—C13—C14 −163.10 (10)
C3—C4—C5—C6 −57.05 (17) C18—C13—C14—C15 2.3 (2)
C4—C5—C6—C1 55.67 (17) P1—C13—C14—C15 −172.26 (11)
C2—C1—C6—C5 −54.09 (16) C13—C14—C15—C16 0.0 (2)
P1—C1—C6—C5 −177.88 (10) C14—C15—C16—C17 −2.0 (2)
C13—P1—C7—C8 −61.65 (11) C14—C15—C16—C19 177.00 (13)
C1—P1—C7—C8 50.53 (11) C15—C16—C17—C18 1.8 (2)
Se1—P1—C7—C8 175.86 (8) C19—C16—C17—C18 −177.24 (13)
C13—P1—C7—C12 62.67 (11) C14—C13—C18—C17 −2.5 (2)
C1—P1—C7—C12 174.85 (9) P1—C13—C18—C17 172.11 (11)
Se1—P1—C7—C12 −59.81 (10) C16—C17—C18—C13 0.5 (2)
C12—C7—C8—C9 55.13 (15) C17—C16—C19—C21 −124.22 (15)
P1—C7—C8—C9 179.19 (10) C15—C16—C19—C21 56.82 (19)
C7—C8—C9—C10 −57.63 (16) C17—C16—C19—C20 111.50 (16)
C8—C9—C10—C11 57.88 (16) C15—C16—C19—C20 −67.46 (18)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C13–C18 benzene ring.

D—H···A D—H H···A D···A D—H···A
C1—H1···Se1i 1.00 3.09 4.0500 (14) 162
C9—H9B···Cg1ii 0.99 2.81 3.6471 143

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2386).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SADABS, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Makhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286–m1287. [DOI] [PMC free article] [PubMed]
  7. Muller, A., Meijboom, R. & Roodt, A. (2008). Dalton Trans. pp. 650–657. [DOI] [PubMed]
  8. Roodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121–137.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.
  11. Vuba, B. & Muller, A. (2012). Acta Cryst. E68, m14–m15. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004643/kp2386sup1.cif

e-68-0o648-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004643/kp2386Isup2.hkl

e-68-0o648-Isup2.hkl (246.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004643/kp2386Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES