Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):o649. doi: 10.1107/S160053681200462X

10-Ethyl-3-(5-methyl-1,3,4-oxadiazol-2-yl)-10H-phenothia­zine

Yu-Zhen Pan a, You-Gui Wang a, Jian-Hui Liu b,*, Li-Cheng Sun b,c,*
PMCID: PMC3295441  PMID: 22412552

Abstract

In the title compound, C17H15N3OS, the phenothia­zine ring system is slightly bent, with a dihedral angle of 13.68 (7)° between the benzene rings. The dihedral angle between the oxadiazole ring and the adjacent benzene ring is 7.72 (7)°. In the crystal, a π–π inter­action with a centroid–centroid distance of 3.752 (2) Å is observed between the benzene rings of neighbouring mol­ecules.

Related literature  

For general background to phenothia­zine derivatives, see: Kim et al. (2011); Hagfeldt et al. (2010). For related structures, see: Chu & Van der Helm (1975); Hdii et al. (1998); Li, Hu et al. (2009); Li, Lv et al. (2009); Yu et al. (2011).graphic file with name e-68-0o649-scheme1.jpg

Experimental  

Crystal data  

  • C17H15N3OS

  • M r = 309.38

  • Triclinic, Inline graphic

  • a = 7.6752 (4) Å

  • b = 8.2913 (4) Å

  • c = 12.9469 (8) Å

  • α = 84.870 (4)°

  • β = 82.569 (4)°

  • γ = 63.696 (3)°

  • V = 731.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.10 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.968, T max = 0.979

  • 5348 measured reflections

  • 2554 independent reflections

  • 2217 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.107

  • S = 1.05

  • 2554 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2004) and SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200462X/is5065sup1.cif

e-68-0o649-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200462X/is5065Isup3.hkl

e-68-0o649-Isup3.hkl (125.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200462X/is5065Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the China Natural Science Foundation (grant No. 21120102036) and the National Basic Research Program of China (grant No. 2009CB220009) for financial support.

supplementary crystallographic information

Comment

The derivatives of phenothiazine are a series important chemical intermediates in design of the dye-sensitized solar cells (DSSCs) (Kim et al., 2011; Hagfeldt et al., 2010). As part of our interest in these materials, here we report the crystal structure of the title compound C17H15N3OS.

The title molecule is in a nonlplanar butterfly conformation with a dihedral angle of 13.68 (7)° between two benzene rings (Fig. 1). The crystal packing exhibits a π–π interaction with a centroid-centroid distance of 3.752 (2) Å between the benzene rings from the neighbouring molecules.

Experimental

A solution of 5-[3-(10-ethyl)phenothiazyl]-tetrazole (500 mg, 1.69 mmol) in 10 ml acetic anhydride was heated to reflux and stirred for 1 h. The excess acetic anhydride was evaporated and the residue solid was extracted three times with dichloromethane. Then the organic layer was washed with water and dried with anhydrous sodium sulfate. After removal of the solvent, the crude product was purified by chromatography on a silica gel column using dichloromethane-ethyl acetate (v/v = 10:1) as eluent and isolated as a yellow powder. Yield: 472 mg (90%). The yellow single crystals suitable for X-ray diffraction were obtained after several days by slow evaporation of a mixture solution of dichloromethane and petroleum ether.

Refinement

H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated as riding atoms, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C17H15N3OS Z = 2
Mr = 309.38 F(000) = 324
Triclinic, P1 Dx = 1.404 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6752 (4) Å Cell parameters from 2708 reflections
b = 8.2913 (4) Å θ = 3.0–31.6°
c = 12.9469 (8) Å µ = 0.23 mm1
α = 84.870 (4)° T = 293 K
β = 82.569 (4)° Block, yellow
γ = 63.696 (3)° 0.15 × 0.15 × 0.10 mm
V = 731.92 (7) Å3

Data collection

Bruker SMART APEX diffractometer 2554 independent reflections
Radiation source: fine-focus sealed tube 2217 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→9
Tmin = 0.968, Tmax = 0.979 k = −9→9
5348 measured reflections l = −15→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2148P] where P = (Fo2 + 2Fc2)/3
2554 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.37243 (8) 0.17365 (6) 0.11098 (4) 0.05078 (19)
O1 0.39396 (19) 0.69128 (15) −0.27750 (9) 0.0430 (3)
C12 0.2887 (2) 0.3831 (2) 0.04285 (13) 0.0353 (4)
N1 0.0965 (2) 0.54971 (18) 0.19818 (11) 0.0410 (4)
C10 0.3234 (3) 0.5423 (2) −0.11819 (13) 0.0388 (4)
C6 0.0893 (3) 0.3994 (2) 0.25572 (13) 0.0376 (4)
C7 0.1642 (2) 0.5454 (2) 0.09210 (13) 0.0371 (4)
C1 0.2039 (3) 0.2227 (2) 0.22245 (13) 0.0377 (4)
N2 0.5266 (2) 0.3956 (2) −0.27726 (12) 0.0460 (4)
C13 0.4168 (3) 0.5350 (2) −0.22376 (13) 0.0388 (4)
C11 0.3653 (3) 0.3829 (2) −0.05932 (13) 0.0382 (4)
H11 0.4470 0.2736 −0.0898 0.046*
C9 0.1961 (3) 0.7029 (2) −0.07199 (14) 0.0452 (5)
H9 0.1633 0.8110 −0.1103 0.054*
C5 −0.0285 (3) 0.4198 (2) 0.34965 (14) 0.0450 (4)
H5 −0.1070 0.5351 0.3734 0.054*
C15 0.0098 (3) 0.7238 (2) 0.24919 (15) 0.0454 (5)
H15A 0.0783 0.7936 0.2189 0.054*
H15B 0.0307 0.7016 0.3224 0.054*
N3 0.5841 (2) 0.4600 (2) −0.37384 (12) 0.0477 (4)
C8 0.1174 (3) 0.7040 (2) 0.03038 (14) 0.0453 (5)
H8 0.0307 0.8133 0.0592 0.054*
C2 0.1976 (3) 0.0770 (2) 0.28143 (15) 0.0462 (5)
H2 0.2731 −0.0388 0.2577 0.055*
C14 0.5034 (3) 0.6320 (2) −0.36985 (13) 0.0424 (4)
C4 −0.0320 (3) 0.2730 (3) 0.40882 (15) 0.0498 (5)
H4 −0.1109 0.2908 0.4716 0.060*
C16 −0.2063 (3) 0.8351 (3) 0.24062 (18) 0.0573 (6)
H16A −0.2300 0.8537 0.1685 0.086*
H16B −0.2488 0.9493 0.2713 0.086*
H16C −0.2773 0.7728 0.2766 0.086*
C3 0.0812 (3) 0.1007 (3) 0.37469 (16) 0.0521 (5)
H3 0.0790 0.0020 0.4140 0.063*
C17 0.5164 (4) 0.7672 (3) −0.44929 (15) 0.0558 (5)
H17A 0.5952 0.8184 −0.4272 0.084*
H17B 0.3878 0.8606 −0.4578 0.084*
H17C 0.5748 0.7102 −0.5145 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0589 (3) 0.0257 (3) 0.0468 (3) −0.0033 (2) 0.0067 (2) 0.00176 (18)
O1 0.0540 (8) 0.0336 (6) 0.0387 (7) −0.0177 (6) −0.0011 (6) 0.0001 (5)
C12 0.0363 (9) 0.0266 (8) 0.0403 (9) −0.0112 (7) −0.0049 (7) 0.0004 (7)
N1 0.0469 (9) 0.0259 (7) 0.0425 (8) −0.0103 (6) 0.0023 (7) −0.0035 (6)
C10 0.0405 (10) 0.0356 (9) 0.0403 (9) −0.0169 (8) −0.0050 (8) 0.0008 (7)
C6 0.0380 (9) 0.0298 (9) 0.0413 (9) −0.0111 (7) −0.0060 (7) −0.0005 (7)
C7 0.0352 (9) 0.0287 (8) 0.0438 (9) −0.0110 (7) −0.0022 (7) −0.0016 (7)
C1 0.0412 (10) 0.0304 (9) 0.0393 (9) −0.0134 (7) −0.0066 (7) 0.0008 (7)
N2 0.0514 (10) 0.0370 (8) 0.0437 (8) −0.0154 (7) −0.0002 (7) 0.0004 (7)
C13 0.0407 (10) 0.0325 (9) 0.0427 (9) −0.0156 (8) −0.0067 (8) 0.0023 (7)
C11 0.0393 (10) 0.0281 (8) 0.0430 (9) −0.0103 (7) −0.0039 (8) −0.0048 (7)
C9 0.0492 (11) 0.0290 (9) 0.0492 (10) −0.0119 (8) −0.0024 (9) 0.0070 (8)
C5 0.0437 (10) 0.0377 (10) 0.0460 (10) −0.0118 (8) 0.0002 (8) −0.0035 (8)
C15 0.0516 (11) 0.0325 (9) 0.0502 (10) −0.0170 (8) −0.0002 (9) −0.0068 (8)
N3 0.0526 (10) 0.0434 (9) 0.0423 (8) −0.0181 (8) 0.0011 (7) −0.0023 (7)
C8 0.0472 (11) 0.0268 (9) 0.0505 (11) −0.0078 (8) 0.0020 (9) −0.0011 (7)
C2 0.0545 (12) 0.0309 (9) 0.0496 (10) −0.0158 (8) −0.0053 (9) 0.0009 (8)
C14 0.0471 (11) 0.0425 (10) 0.0374 (9) −0.0197 (8) −0.0031 (8) −0.0014 (7)
C4 0.0507 (12) 0.0497 (11) 0.0452 (10) −0.0212 (10) 0.0014 (9) 0.0039 (9)
C16 0.0530 (12) 0.0355 (10) 0.0696 (13) −0.0089 (9) 0.0043 (10) −0.0056 (9)
C3 0.0612 (13) 0.0424 (10) 0.0523 (11) −0.0249 (10) −0.0033 (10) 0.0093 (9)
C17 0.0736 (15) 0.0516 (12) 0.0451 (11) −0.0321 (11) −0.0024 (10) 0.0049 (9)

Geometric parameters (Å, º)

S1—C1 1.7541 (17) C9—H9 0.9300
S1—C12 1.7583 (17) C5—C4 1.388 (3)
O1—C14 1.362 (2) C5—H5 0.9300
O1—C13 1.365 (2) C15—C16 1.512 (3)
C12—C11 1.376 (2) C15—H15A 0.9700
C12—C7 1.409 (2) C15—H15B 0.9700
N1—C7 1.402 (2) N3—C14 1.282 (2)
N1—C6 1.413 (2) C8—H8 0.9300
N1—C15 1.472 (2) C2—C3 1.379 (3)
C10—C9 1.387 (2) C2—H2 0.9300
C10—C11 1.392 (2) C14—C17 1.480 (2)
C10—C13 1.452 (2) C4—C3 1.380 (3)
C6—C5 1.394 (2) C4—H4 0.9300
C6—C1 1.407 (2) C16—H16A 0.9600
C7—C8 1.402 (2) C16—H16B 0.9600
C1—C2 1.387 (2) C16—H16C 0.9600
N2—C13 1.287 (2) C3—H3 0.9300
N2—N3 1.411 (2) C17—H17A 0.9600
C11—H11 0.9300 C17—H17B 0.9600
C9—C8 1.383 (2) C17—H17C 0.9600
C1—S1—C12 101.74 (8) N1—C15—H15A 108.5
C14—O1—C13 102.81 (13) C16—C15—H15A 108.5
C11—C12—C7 121.19 (15) N1—C15—H15B 108.5
C11—C12—S1 116.40 (12) C16—C15—H15B 108.5
C7—C12—S1 122.15 (13) H15A—C15—H15B 107.5
C7—N1—C6 123.14 (14) C14—N3—N2 106.14 (14)
C7—N1—C15 118.30 (14) C9—C8—C7 122.01 (16)
C6—N1—C15 118.23 (14) C9—C8—H8 119.0
C9—C10—C11 118.04 (16) C7—C8—H8 119.0
C9—C10—C13 122.68 (16) C3—C2—C1 121.15 (17)
C11—C10—C13 119.26 (15) C3—C2—H2 119.4
C5—C6—C1 117.04 (16) C1—C2—H2 119.4
C5—C6—N1 121.22 (15) N3—C14—O1 112.57 (15)
C1—C6—N1 121.73 (15) N3—C14—C17 129.09 (17)
C8—C7—N1 121.38 (15) O1—C14—C17 118.33 (16)
C8—C7—C12 116.46 (15) C3—C4—C5 120.19 (17)
N1—C7—C12 122.11 (15) C3—C4—H4 119.9
C2—C1—C6 120.68 (16) C5—C4—H4 119.9
C2—C1—S1 116.70 (13) C15—C16—H16A 109.5
C6—C1—S1 122.48 (13) C15—C16—H16B 109.5
C13—N2—N3 106.45 (14) H16A—C16—H16B 109.5
N2—C13—O1 112.02 (15) C15—C16—H16C 109.5
N2—C13—C10 128.50 (16) H16A—C16—H16C 109.5
O1—C13—C10 119.47 (15) H16B—C16—H16C 109.5
C12—C11—C10 121.51 (15) C2—C3—C4 119.06 (17)
C12—C11—H11 119.2 C2—C3—H3 120.5
C10—C11—H11 119.2 C4—C3—H3 120.5
C8—C9—C10 120.70 (16) C14—C17—H17A 109.5
C8—C9—H9 119.6 C14—C17—H17B 109.5
C10—C9—H9 119.6 H17A—C17—H17B 109.5
C4—C5—C6 121.87 (17) C14—C17—H17C 109.5
C4—C5—H5 119.1 H17A—C17—H17C 109.5
C6—C5—H5 119.1 H17B—C17—H17C 109.5
N1—C15—C16 114.91 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5065).

References

  1. Brandenburg, K. & Putz, H. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.
  4. Hagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663. [DOI] [PubMed]
  5. Hdii, F., Reboul, J.-P., Barbe, J., Siri, D. & Pèpe, G. (1998). Acta Cryst. C54, 1151–1152.
  6. Kim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784–5787. [DOI] [PubMed]
  7. Li, D. M., Hu, R. T., Zhou, W., Sun, P. P., Kan, Y. H., Tian, Y. P., Wu, J. Y., Tao, X. T. & Jiang, M. H. (2009). Eur. J. Inorg. Chem. pp. 2664–2672.
  8. Li, D. M., Lv, L. F., Sun, P. P., Zhou, W., Wang, P., Wu, J. Y., Kan, Y. H., Zhou, H. P. & Tian, Y. P. (2009). Dyes Pigm. 83, 180–186.
  9. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Yu, D.-H., Wang, J.-Q., Kong, L. & Liu, Z. (2011). Acta Cryst. E67, o3344. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200462X/is5065sup1.cif

e-68-0o649-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200462X/is5065Isup3.hkl

e-68-0o649-Isup3.hkl (125.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200462X/is5065Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES