Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):o650. doi: 10.1107/S1600536812004278

Isopropyl 3,4,5-trihy­droxy­benzoate

Wei Lan a, Xu-Ji Shen a, Chao-Ni Xiao a, Shi-Xiang Wang a, Xiao-Hui Zheng a,b,*
PMCID: PMC3295442  PMID: 22412553

Abstract

In the title compound, C10H12O5, the dihedral angle between the benzene ring is almost coplanar with the attached C(O)—O—C group [dihedral angle = 0.32 (15)°]. In the crystal, two intermolecular O—H⋯O hydrogen bonds make R 4 4(26) ring mofits.

Related literature  

For the properties of isopropyl gallate, see: Calheiros et al. (2008); Morais et al. (2010). For the synthesis method, see: Christiansen (1926); Li et al. (2001). For the hydrogen-bonding pattern, see: Bernstein et al. (1995).graphic file with name e-68-0o650-scheme1.jpg

Experimental  

Crystal data  

  • C10H12O5

  • M r = 212.20

  • Monoclinic, Inline graphic

  • a = 19.148 (6) Å

  • b = 4.7030 (15) Å

  • c = 11.571 (4) Å

  • β = 90.159 (5)°

  • V = 1042.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.31 × 0.29 × 0.21 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.977

  • 5181 measured reflections

  • 2055 independent reflections

  • 1589 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.132

  • S = 1.05

  • 2055 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812004278/mw2052sup1.cif

e-68-0o650-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004278/mw2052Isup2.hkl

e-68-0o650-Isup2.hkl (101.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004278/mw2052Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 2.00 2.772 (2) 158
O3—H3⋯O4ii 0.82 1.93 2.742 (2) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Higher Specialized Research Fund for the Doctoral Program (grant Nos. 20106101120024 and 20106101110001) and the Important Science and Technology Specific Innovative Projects Program of Shannxi Province (grant No. 2010ZDKG-46).

supplementary crystallographic information

Comment

Pharmacological studies indicate the title compound, (I), has antioxidant, anti-apoptotic and anti-platelet activities suggesting it could be a new drug with therapeutic effects on cardiovascular or cerebrovascular diseases. (Calheiros et al., 2008; Morais et al., 2010).

The structure of the title compound, (I), is shown in Fig. 1. In the crystal, two intermolecular O—H···O hydrogen bonds make R44(26) ring mofits (Bernstein et al., 1995) which links the molecules into one-dimensional chains along [001] (Fig. 2).

Experimental

0.01M p-toluenesulfonic acid in 2-propanol was added to a solution of 0.1M gallic acid in 500 ml of 2-propanol at room temperature. After being stirred and refluxed for 16 h, the solvent was removed under reduced pressure and the residue was extracted three times with ethyl acetate and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO3 solution, saturated aqueous NaCl solution, dried over MgSO4 and was evaporated to dryness. The crude product was purified by chromatography (SiO2; elution with petroleum ether and ethyl acetate, 5:1 v/v). Yield 36%. (Christiansen, 1926; Li et al., 2001).

X-ray quality crystals were obtained from a solution of the title compound in acetone and toluene at room temperature. Spectroscopic analysis: IR (KBr, cm-1): 3499, 2971, 2922, 2957, 1677, 1609, 1671, 1613, 1541, 1449, 1327, 1252, 1165, 1111, 1026, 979; 1H NMR (DMSO, δ, p.p.m.): 9.126(s, 3 H), 6.946(s, 2 H), 5.014—5.055(m, 1 H), 1.274 (s, 3H), 1.264 (s, 3 H).

Refinement

H atoms bonded to O atoms were located in a difference map and their positions adjusted to give O—H = 0.82 Å. Other H atoms were positioned geometrically with C—H = 0.93–0.96 Å. All were included as riding contributions (including free rotation about the ethanol C—C bond) with Uiso(H) = 1.2Ueq(O or C) or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom numbering scheme, showing displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

The packing of (I) viewed down the a axis with O—H···O hydrogen bonds shown as dashed lines.

Crystal data

C10H12O5 F(000) = 448
Mr = 212.20 Dx = 1.353 Mg m3
Monoclinic, P21/c Melting point: 396(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 19.148 (6) Å Cell parameters from 1697 reflections
b = 4.7030 (15) Å θ = 3.5–25.7°
c = 11.571 (4) Å µ = 0.11 mm1
β = 90.159 (5)° T = 296 K
V = 1042.0 (6) Å3 Block, colourless
Z = 4 0.31 × 0.29 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer 2055 independent reflections
Radiation source: fine-focus sealed tube 1589 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 26.1°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −21→23
Tmin = 0.967, Tmax = 0.977 k = −5→5
5181 measured reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.0222P] where P = (Fo2 + 2Fc2)/3
2055 reflections (Δ/σ)max < 0.001
141 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.46197 (5) −0.0043 (2) 0.24204 (10) 0.0447 (3)
H1 0.4823 −0.1535 0.2275 0.067*
O2 0.45282 (6) −0.3102 (3) 0.04068 (10) 0.0478 (3)
H2 0.4449 −0.3814 −0.0227 0.072*
O3 0.34242 (6) −0.2621 (3) −0.09898 (9) 0.0485 (4)
H3 0.3094 −0.2187 −0.1407 0.073*
O4 0.23999 (6) 0.5891 (3) 0.25056 (9) 0.0462 (4)
O5 0.18797 (6) 0.4562 (3) 0.08655 (10) 0.0476 (4)
C1 0.35320 (8) 0.2096 (3) 0.20035 (12) 0.0349 (4)
H1A 0.3564 0.3109 0.2692 0.042*
C2 0.40505 (7) 0.0233 (3) 0.17032 (13) 0.0337 (4)
C3 0.40050 (7) −0.1299 (3) 0.06846 (12) 0.0341 (4)
C4 0.34216 (8) −0.0952 (3) −0.00283 (12) 0.0339 (4)
C5 0.29047 (8) 0.0934 (3) 0.02583 (12) 0.0354 (4)
H5 0.2522 0.1181 −0.0227 0.042*
C6 0.29573 (7) 0.2479 (3) 0.12825 (12) 0.0329 (4)
C7 0.24087 (8) 0.4472 (3) 0.16310 (13) 0.0356 (4)
C8 0.13112 (9) 0.6509 (4) 0.10811 (16) 0.0549 (5)
H8 0.1488 0.8212 0.1473 0.066*
C9 0.10338 (12) 0.7293 (5) −0.0096 (2) 0.0821 (8)
H9A 0.1394 0.8223 −0.0530 0.123*
H9B 0.0643 0.8552 −0.0012 0.123*
H9C 0.0888 0.5603 −0.0495 0.123*
C10 0.07847 (11) 0.5047 (6) 0.1831 (2) 0.0847 (8)
H10A 0.0618 0.3367 0.1448 0.127*
H10B 0.0400 0.6308 0.1974 0.127*
H10C 0.0999 0.4529 0.2552 0.127*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0373 (6) 0.0438 (7) 0.0530 (7) 0.0058 (5) −0.0220 (5) −0.0060 (5)
O2 0.0415 (7) 0.0523 (8) 0.0495 (7) 0.0136 (6) −0.0065 (5) −0.0082 (6)
O3 0.0558 (7) 0.0553 (8) 0.0344 (6) 0.0150 (6) −0.0117 (5) −0.0108 (5)
O4 0.0429 (7) 0.0565 (8) 0.0391 (7) 0.0089 (5) −0.0089 (5) −0.0104 (5)
O5 0.0350 (6) 0.0611 (8) 0.0467 (7) 0.0134 (5) −0.0145 (5) −0.0123 (5)
C1 0.0370 (8) 0.0361 (9) 0.0315 (8) −0.0020 (7) −0.0077 (6) −0.0006 (6)
C2 0.0293 (7) 0.0349 (9) 0.0369 (8) −0.0032 (6) −0.0097 (6) 0.0038 (6)
C3 0.0322 (8) 0.0332 (8) 0.0370 (8) 0.0027 (6) −0.0023 (6) 0.0043 (6)
C4 0.0367 (8) 0.0376 (9) 0.0274 (7) 0.0000 (6) −0.0028 (6) 0.0007 (6)
C5 0.0333 (8) 0.0428 (9) 0.0300 (8) 0.0003 (6) −0.0087 (6) 0.0030 (6)
C6 0.0308 (7) 0.0370 (9) 0.0310 (8) −0.0003 (6) −0.0044 (6) 0.0033 (6)
C7 0.0331 (8) 0.0429 (9) 0.0308 (8) −0.0013 (7) −0.0069 (6) 0.0018 (7)
C8 0.0375 (9) 0.0619 (13) 0.0653 (12) 0.0159 (9) −0.0152 (8) −0.0146 (10)
C9 0.0632 (13) 0.0969 (19) 0.0860 (16) 0.0249 (13) −0.0316 (11) 0.0047 (13)
C10 0.0523 (13) 0.120 (2) 0.0817 (16) 0.0100 (13) 0.0083 (11) −0.0198 (14)

Geometric parameters (Å, º)

O1—C2 1.3741 (16) C4—C5 1.371 (2)
O1—H1 0.8200 C5—C6 1.394 (2)
O2—C3 1.3519 (18) C5—H5 0.9300
O2—H2 0.8200 C6—C7 1.465 (2)
O3—C4 1.3616 (19) C8—C10 1.499 (3)
O3—H3 0.8200 C8—C9 1.506 (3)
O4—C7 1.2122 (19) C8—H8 0.9800
O5—C7 1.3443 (17) C9—H9A 0.9600
O5—C8 1.445 (2) C9—H9B 0.9600
C1—C2 1.370 (2) C9—H9C 0.9600
C1—C6 1.3909 (19) C10—H10A 0.9600
C1—H1A 0.9300 C10—H10B 0.9600
C2—C3 1.384 (2) C10—H10C 0.9600
C3—C4 1.397 (2)
C2—O1—H1 109.5 O4—C7—O5 121.38 (14)
C3—O2—H2 109.5 O4—C7—C6 126.39 (13)
C4—O3—H3 109.5 O5—C7—C6 112.22 (13)
C7—O5—C8 118.22 (13) O5—C8—C10 108.52 (18)
C2—C1—C6 120.23 (14) O5—C8—C9 105.25 (16)
C2—C1—H1A 119.9 C10—C8—C9 113.57 (18)
C6—C1—H1A 119.9 O5—C8—H8 109.8
C1—C2—O1 118.78 (13) C10—C8—H8 109.8
C1—C2—C3 120.34 (13) C9—C8—H8 109.8
O1—C2—C3 120.86 (14) C8—C9—H9A 109.5
O2—C3—C2 118.96 (12) C8—C9—H9B 109.5
O2—C3—C4 121.67 (13) H9A—C9—H9B 109.5
C2—C3—C4 119.37 (14) C8—C9—H9C 109.5
O3—C4—C5 125.10 (13) H9A—C9—H9C 109.5
O3—C4—C3 114.24 (14) H9B—C9—H9C 109.5
C5—C4—C3 120.66 (13) C8—C10—H10A 109.5
C4—C5—C6 119.51 (13) C8—C10—H10B 109.5
C4—C5—H5 120.2 H10A—C10—H10B 109.5
C6—C5—H5 120.2 C8—C10—H10C 109.5
C1—C6—C5 119.86 (14) H10A—C10—H10C 109.5
C1—C6—C7 118.98 (13) H10B—C10—H10C 109.5
C5—C6—C7 121.15 (13)
C6—C1—C2—O1 178.39 (14) C2—C1—C6—C5 0.8 (2)
C6—C1—C2—C3 −0.5 (2) C2—C1—C6—C7 179.57 (13)
C1—C2—C3—O2 179.39 (13) C4—C5—C6—C1 0.0 (2)
O1—C2—C3—O2 0.6 (2) C4—C5—C6—C7 −178.73 (13)
C1—C2—C3—C4 −0.7 (2) C8—O5—C7—O4 3.0 (2)
O1—C2—C3—C4 −179.53 (13) C8—O5—C7—C6 −178.08 (14)
O2—C3—C4—O3 1.6 (2) C1—C6—C7—O4 0.5 (2)
C2—C3—C4—O3 −178.31 (14) C5—C6—C7—O4 179.19 (16)
O2—C3—C4—C5 −178.57 (14) C1—C6—C7—O5 −178.35 (13)
C2—C3—C4—C5 1.5 (2) C5—C6—C7—O5 0.4 (2)
O3—C4—C5—C6 178.66 (14) C7—O5—C8—C10 −87.29 (19)
C3—C4—C5—C6 −1.2 (2) C7—O5—C8—C9 150.82 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1i 0.82 2.00 2.772 (2) 158
O3—H3···O4ii 0.82 1.93 2.742 (2) 173

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2052).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Calheiros, R., Machado, N. F. L., Fiuza, S. M., Gaspar, A., Garrido, J., Milhazes, N., Borges, F. & Marques, M. P. M. (2008). J. Raman Spectrosc. 39, 95–107.
  4. Christiansen, W. G. (1926). J. Am. Chem. Soc. 48, 1358–1365.
  5. Li, M., Chen, L. & Wu, K. (2001). Huaxue Shijie, 42, 313–315.
  6. Morais, M. C. C., Luqman, S., Kondratyuk, T. P., Petronio, M. S., Regasini, L. O., Silva, D. H. S., Bolzani, V. S., Soares, C. P. & Pezzuto, J. M. (2010). Nat. Prod. Res. 24, 1758–1765. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812004278/mw2052sup1.cif

e-68-0o650-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004278/mw2052Isup2.hkl

e-68-0o650-Isup2.hkl (101.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004278/mw2052Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES