Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):o664–o665. doi: 10.1107/S1600536812002917

2-(2,4,5-Trimeth­oxy­phen­yl)-2,3-dihydro­quinolin-4(1H)-one

Suchada Chantrapromma a,*,, Pumsak Ruanwas a, Nawong Boonnak a, Kan Chantrapromma b, Hoong-Kun Fun c,§
PMCID: PMC3295454  PMID: 22412565

Abstract

In the title aza-flavanone, C18H19NO4, an intra­molecular cyclization product of chalcone, the central heterocyclic ring is in an envelope conformation and the dihedral angle between the benzene rings is 51.03 (10)°. The meth­oxy groups at the ortho and para positions are slightly twisted from the benzene ring to which they are bound [C—O—C—C = 21.9 (3) and −171.93 (18)°, respectively], whereas the meth­oxy group at the meta position is almost coplanar [C—O—C—C = 3.5 (3)°]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions into chains along the [001] direction. Weak C—H⋯π inter­actions also occur.

Related literature  

For background to the syntheses and properties of aza-flavanones, see: Göker et al. (2005); Xia et al. (1998). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).graphic file with name e-68-0o664-scheme1.jpg

Experimental  

Crystal data  

  • C18H19NO4

  • M r = 313.34

  • Monoclinic, Inline graphic

  • a = 10.7354 (11) Å

  • b = 17.1525 (16) Å

  • c = 8.6471 (8) Å

  • β = 102.981 (2)°

  • V = 1551.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.41 × 0.16 × 0.06 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.962, T max = 0.994

  • 13335 measured reflections

  • 4511 independent reflections

  • 2751 reflections with I > 2σ(I)

  • R int = 0.062

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.156

  • S = 1.03

  • 4511 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002917/hb6602sup1.cif

e-68-0o664-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002917/hb6602Isup2.hkl

e-68-0o664-Isup2.hkl (221KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812002917/hb6602Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.90 (3) 2.32 (3) 3.156 (2) 155 (3)
C2—H2A⋯O4i 0.95 2.59 3.439 (3) 150
C16—H16B⋯O3ii 0.98 2.58 3.459 (3) 150
C8—H8BCg1iii 0.99 2.74 3.698 (2) 164
C16—H16CCg1iv 0.98 2.68 3.518 (3) 144
C17—H17CCg2ii 0.98 2.76 3.560 (3) 140
C18—H18CCg2i 0.98 2.75 3.574 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Prince of Songkla University and the Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. PR thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. NW thanks the Prince of Songkla University for a postdoctoral fellowship. HKF thanks King Saud University, Riyadh, Saudi Arabia, for the award of a visiting professorship (23 December 2011 to 14 January 2012).

supplementary crystallographic information

Comment

Aza-flavanone or 2-aryl-2,3-dihydroquinolin-4(1H)-one, a synthesized analogue of flavanone, can be achieved by intramolecular cyclization of a chalcone derivative in basic medium (Xia et al., 1998). They are also found to exhibit antibacterial, antifungal (Göker et al., 2005) and anticancer activities (Xia et al., 1998). In the course of our research on medicinal chemistry, we have synthesized the title aza-flavanone (I) in order to study its biological activity.

The total molecule of (I) is twisted (Fig. 1). The dihedral angle between two benzene rings is 51.03 (10)°. The N-atom containing central ring is in an envelope conformation with the puckered C9 atom having the maximum deviation of 0.352 (2) Å, and the puckering parameter Q = 0.502 (2) Å, θ = 124.5 (2)° and φ = 110.8 (3)° (Cremer & Pople, 1975). The three methoxy groups of the 2,4,5-trimethoxyphenyl unit have two different orientations: the two methoxy groups at ortho (at atom C11) and para (at atom C13) positions are slightly twisted from the attached benzene ring with torsion angles C16—O2—C11—C12 = 21.9 (3)° and C17—O3—C13—C14 = -171.93 (18)°, whereas the third one at meta (at atom C14) position is co-planar with the torsion angle of C18—O4—C14—C15 = 3.5 (3)°. These angle values also indicated that the methyl group at para position points towards the ortho-methoxy but points away from the meta-methoxy due to the steric effect.

In the crystal (Fig. 2), the molecules are linked by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1) into chains along the c axis. C—H···π interactions (Table 1) also occur.

Experimental

To a 50 ml round-bottom flask filled with 2,4,5-trimethoxybenzaldehyde (0.50 g, 2.55 mmol), EtOH (20 ml) and 2-aminoacetophenone (0.31 ml, 2.55 mmol) were sequentially added at room temperature. After stirring for a while, 5 ml of 30% NaOH (aq) was added slowly and was then further stirred for 2 h. A pale yellow precipitate was formed and collected by filtration yielding the title compound (I) (1.26 g, 75% yield), which was further recrystallized in EtOH to obtain yellow needles of (I) after several days, m.p. 419–420 K.

Refinement

Amide H atom was located in a Fourier difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for aromatic, 1.00 for CH, 0.99 Å for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Partial packing diagram of the title compound viewed approximately along the b axis, showing chains running along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H19NO4 F(000) = 664
Mr = 313.34 Dx = 1.341 Mg m3
Monoclinic, P21/c Melting point = 419–420 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 10.7354 (11) Å Cell parameters from 4511 reflections
b = 17.1525 (16) Å θ = 2.0–30.0°
c = 8.6471 (8) Å µ = 0.10 mm1
β = 102.981 (2)° T = 100 K
V = 1551.6 (3) Å3 Needle, yellow
Z = 4 0.41 × 0.16 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer 4511 independent reflections
Radiation source: sealed tube 2751 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.062
φ and ω scans θmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→15
Tmin = 0.962, Tmax = 0.994 k = −20→24
13335 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.8134P] where P = (Fo2 + 2Fc2)/3
4511 reflections (Δ/σ)max = 0.001
215 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.37635 (19) 0.62888 (9) 0.70678 (18) 0.0317 (4)
O2 0.04382 (17) 0.43778 (8) 0.70161 (18) 0.0258 (4)
O3 0.06325 (15) 0.15459 (8) 0.69306 (16) 0.0186 (3)
O4 0.25884 (15) 0.16149 (8) 0.56105 (17) 0.0190 (3)
N1 0.2864 (2) 0.44806 (10) 0.3926 (2) 0.0188 (4)
C1 0.3224 (2) 0.51866 (11) 0.3388 (2) 0.0169 (4)
C2 0.3287 (2) 0.52803 (12) 0.1791 (3) 0.0200 (5)
H2A 0.3127 0.4847 0.1091 0.024*
C3 0.3577 (2) 0.59951 (13) 0.1230 (3) 0.0227 (5)
H3A 0.3602 0.6050 0.0144 0.027*
C4 0.3837 (2) 0.66416 (13) 0.2242 (3) 0.0261 (5)
H4A 0.4023 0.7135 0.1847 0.031*
C5 0.3817 (2) 0.65508 (13) 0.3821 (3) 0.0253 (5)
H5A 0.4008 0.6984 0.4517 0.030*
C6 0.3519 (2) 0.58298 (12) 0.4419 (2) 0.0193 (5)
C7 0.3519 (2) 0.57481 (12) 0.6125 (3) 0.0210 (5)
C8 0.3224 (2) 0.49397 (12) 0.6637 (2) 0.0206 (5)
H8A 0.2854 0.4977 0.7585 0.025*
H8B 0.4025 0.4634 0.6929 0.025*
C9 0.2289 (2) 0.45255 (11) 0.5313 (2) 0.0185 (4)
H9A 0.1501 0.4854 0.5017 0.022*
C10 0.1895 (2) 0.37290 (11) 0.5803 (2) 0.0169 (4)
C11 0.0934 (2) 0.36814 (11) 0.6637 (2) 0.0197 (5)
C12 0.0477 (2) 0.29603 (11) 0.7021 (2) 0.0188 (5)
H12A −0.0207 0.2936 0.7552 0.023*
C13 0.1030 (2) 0.22825 (11) 0.6622 (2) 0.0169 (4)
C14 0.2058 (2) 0.23196 (11) 0.5876 (2) 0.0159 (4)
C15 0.2472 (2) 0.30401 (11) 0.5455 (2) 0.0173 (4)
H15A 0.3156 0.3065 0.4925 0.021*
C16 −0.0213 (3) 0.43603 (13) 0.8271 (3) 0.0270 (5)
H16A −0.0456 0.4892 0.8499 0.041*
H16B 0.0349 0.4139 0.9221 0.041*
H16C −0.0983 0.4038 0.7961 0.041*
C17 −0.0519 (2) 0.14953 (12) 0.7498 (3) 0.0246 (5)
H17A −0.0727 0.0946 0.7626 0.037*
H17B −0.1220 0.1743 0.6732 0.037*
H17C −0.0399 0.1762 0.8523 0.037*
C18 0.3688 (2) 0.16518 (12) 0.4928 (3) 0.0213 (5)
H18A 0.4007 0.1123 0.4825 0.032*
H18B 0.4357 0.1962 0.5615 0.032*
H18C 0.3450 0.1895 0.3877 0.032*
H1N1 0.241 (3) 0.4165 (16) 0.317 (3) 0.037 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0502 (13) 0.0223 (8) 0.0222 (8) −0.0092 (8) 0.0077 (8) −0.0045 (6)
O2 0.0385 (11) 0.0150 (7) 0.0295 (9) 0.0050 (7) 0.0196 (8) 0.0012 (6)
O3 0.0240 (9) 0.0132 (7) 0.0206 (7) −0.0036 (6) 0.0093 (7) 0.0000 (6)
O4 0.0218 (9) 0.0126 (7) 0.0237 (8) 0.0007 (6) 0.0077 (7) 0.0000 (6)
N1 0.0262 (11) 0.0151 (8) 0.0161 (9) −0.0046 (7) 0.0070 (8) −0.0002 (7)
C1 0.0160 (11) 0.0151 (9) 0.0205 (10) 0.0004 (8) 0.0062 (9) 0.0006 (8)
C2 0.0206 (12) 0.0191 (10) 0.0222 (11) −0.0015 (8) 0.0088 (9) −0.0025 (8)
C3 0.0228 (13) 0.0263 (11) 0.0213 (11) −0.0021 (9) 0.0094 (10) 0.0012 (9)
C4 0.0332 (15) 0.0187 (10) 0.0289 (12) −0.0064 (10) 0.0124 (11) 0.0016 (9)
C5 0.0318 (15) 0.0188 (10) 0.0270 (12) −0.0078 (9) 0.0101 (11) −0.0022 (9)
C6 0.0213 (12) 0.0169 (10) 0.0201 (10) −0.0030 (8) 0.0055 (9) −0.0007 (8)
C7 0.0230 (13) 0.0193 (10) 0.0212 (11) −0.0037 (9) 0.0059 (9) −0.0008 (8)
C8 0.0276 (13) 0.0180 (10) 0.0158 (10) −0.0007 (9) 0.0040 (9) 0.0006 (8)
C9 0.0234 (13) 0.0145 (9) 0.0187 (10) 0.0005 (8) 0.0070 (9) 0.0012 (7)
C10 0.0214 (12) 0.0134 (9) 0.0160 (9) −0.0009 (8) 0.0043 (9) 0.0006 (7)
C11 0.0266 (13) 0.0141 (9) 0.0184 (10) 0.0009 (8) 0.0051 (9) −0.0009 (8)
C12 0.0223 (13) 0.0181 (10) 0.0174 (10) 0.0010 (8) 0.0077 (9) 0.0017 (8)
C13 0.0235 (12) 0.0134 (9) 0.0129 (9) −0.0023 (8) 0.0018 (8) 0.0014 (7)
C14 0.0212 (12) 0.0129 (9) 0.0128 (9) 0.0012 (8) 0.0019 (8) −0.0013 (7)
C15 0.0194 (12) 0.0164 (9) 0.0165 (10) −0.0004 (8) 0.0044 (9) 0.0016 (8)
C16 0.0357 (15) 0.0231 (11) 0.0262 (12) 0.0103 (10) 0.0154 (11) 0.0034 (9)
C17 0.0275 (14) 0.0198 (11) 0.0294 (12) −0.0029 (9) 0.0125 (10) 0.0019 (9)
C18 0.0224 (13) 0.0192 (10) 0.0250 (11) 0.0013 (9) 0.0111 (10) 0.0000 (8)

Geometric parameters (Å, º)

O1—C7 1.224 (2) C8—C9 1.519 (3)
O2—C11 1.377 (2) C8—H8A 0.9900
O2—C16 1.417 (3) C8—H8B 0.9900
O3—C13 1.379 (2) C9—C10 1.518 (3)
O3—C17 1.432 (3) C9—H9A 1.0000
O4—C14 1.377 (2) C10—C11 1.387 (3)
O4—C18 1.435 (3) C10—C15 1.398 (3)
N1—C1 1.383 (3) C11—C12 1.398 (3)
N1—C9 1.470 (3) C12—C13 1.384 (3)
N1—H1N1 0.90 (3) C12—H12A 0.9500
C1—C2 1.407 (3) C13—C14 1.400 (3)
C1—C6 1.409 (3) C14—C15 1.389 (3)
C2—C3 1.380 (3) C15—H15A 0.9500
C2—H2A 0.9500 C16—H16A 0.9800
C3—C4 1.401 (3) C16—H16B 0.9800
C3—H3A 0.9500 C16—H16C 0.9800
C4—C5 1.379 (3) C17—H17A 0.9800
C4—H4A 0.9500 C17—H17B 0.9800
C5—C6 1.405 (3) C17—H17C 0.9800
C5—H5A 0.9500 C18—H18A 0.9800
C6—C7 1.482 (3) C18—H18B 0.9800
C7—C8 1.511 (3) C18—H18C 0.9800
C11—O2—C16 116.60 (16) C8—C9—H9A 107.9
C13—O3—C17 116.79 (16) C11—C10—C15 118.63 (18)
C14—O4—C18 116.03 (15) C11—C10—C9 118.94 (18)
C1—N1—C9 115.41 (16) C15—C10—C9 122.42 (19)
C1—N1—H1N1 115.3 (16) O2—C11—C10 116.43 (18)
C9—N1—H1N1 111.6 (17) O2—C11—C12 122.38 (19)
N1—C1—C2 120.58 (18) C10—C11—C12 121.16 (19)
N1—C1—C6 120.86 (18) C13—C12—C11 119.4 (2)
C2—C1—C6 118.56 (18) C13—C12—H12A 120.3
C3—C2—C1 120.75 (19) C11—C12—H12A 120.3
C3—C2—H2A 119.6 O3—C13—C12 123.56 (19)
C1—C2—H2A 119.6 O3—C13—C14 116.19 (18)
C2—C3—C4 120.83 (19) C12—C13—C14 120.25 (18)
C2—C3—H3A 119.6 O4—C14—C15 124.66 (19)
C4—C3—H3A 119.6 O4—C14—C13 115.80 (17)
C5—C4—C3 118.9 (2) C15—C14—C13 119.53 (18)
C5—C4—H4A 120.5 C14—C15—C10 120.82 (19)
C3—C4—H4A 120.5 C14—C15—H15A 119.6
C4—C5—C6 121.3 (2) C10—C15—H15A 119.6
C4—C5—H5A 119.3 O2—C16—H16A 109.5
C6—C5—H5A 119.3 O2—C16—H16B 109.5
C5—C6—C1 119.58 (19) H16A—C16—H16B 109.5
C5—C6—C7 120.06 (19) O2—C16—H16C 109.5
C1—C6—C7 120.37 (18) H16A—C16—H16C 109.5
O1—C7—C6 122.93 (19) H16B—C16—H16C 109.5
O1—C7—C8 121.87 (18) O3—C17—H17A 109.5
C6—C7—C8 115.19 (17) O3—C17—H17B 109.5
C7—C8—C9 110.81 (17) H17A—C17—H17B 109.5
C7—C8—H8A 109.5 O3—C17—H17C 109.5
C9—C8—H8A 109.5 H17A—C17—H17C 109.5
C7—C8—H8B 109.5 H17B—C17—H17C 109.5
C9—C8—H8B 109.5 O4—C18—H18A 109.5
H8A—C8—H8B 108.1 O4—C18—H18B 109.5
N1—C9—C10 112.03 (16) H18A—C18—H18B 109.5
N1—C9—C8 108.16 (18) O4—C18—H18C 109.5
C10—C9—C8 112.88 (17) H18A—C18—H18C 109.5
N1—C9—H9A 107.9 H18B—C18—H18C 109.5
C10—C9—H9A 107.9
C9—N1—C1—C2 −153.9 (2) N1—C9—C10—C15 25.1 (3)
C9—N1—C1—C6 25.2 (3) C8—C9—C10—C15 −97.3 (2)
N1—C1—C2—C3 176.4 (2) C16—O2—C11—C10 −160.0 (2)
C6—C1—C2—C3 −2.7 (3) C16—O2—C11—C12 21.9 (3)
C1—C2—C3—C4 1.0 (4) C15—C10—C11—O2 177.03 (19)
C2—C3—C4—C5 1.0 (4) C9—C10—C11—O2 −2.5 (3)
C3—C4—C5—C6 −1.2 (4) C15—C10—C11—C12 −4.8 (3)
C4—C5—C6—C1 −0.5 (4) C9—C10—C11—C12 175.6 (2)
C4—C5—C6—C7 179.3 (2) O2—C11—C12—C13 −179.2 (2)
N1—C1—C6—C5 −176.7 (2) C10—C11—C12—C13 2.8 (3)
C2—C1—C6—C5 2.5 (3) C17—O3—C13—C12 8.6 (3)
N1—C1—C6—C7 3.5 (3) C17—O3—C13—C14 −171.93 (18)
C2—C1—C6—C7 −177.4 (2) C11—C12—C13—O3 −179.02 (19)
C5—C6—C7—O1 0.5 (4) C11—C12—C13—C14 1.6 (3)
C1—C6—C7—O1 −179.7 (2) C18—O4—C14—C15 3.5 (3)
C5—C6—C7—C8 −178.2 (2) C18—O4—C14—C13 −176.60 (18)
C1—C6—C7—C8 1.6 (3) O3—C13—C14—O4 −3.1 (3)
O1—C7—C8—C9 148.3 (2) C12—C13—C14—O4 176.39 (19)
C6—C7—C8—C9 −33.0 (3) O3—C13—C14—C15 176.84 (18)
C1—N1—C9—C10 178.76 (19) C12—C13—C14—C15 −3.7 (3)
C1—N1—C9—C8 −56.2 (2) O4—C14—C15—C10 −178.52 (19)
C7—C8—C9—N1 59.1 (2) C13—C14—C15—C10 1.6 (3)
C7—C8—C9—C10 −176.39 (18) C11—C10—C15—C14 2.6 (3)
N1—C9—C10—C11 −155.4 (2) C9—C10—C15—C14 −177.8 (2)
C8—C9—C10—C11 82.2 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O3i 0.90 (3) 2.32 (3) 3.156 (2) 155 (3)
C2—H2A···O4i 0.95 2.59 3.439 (3) 150
C16—H16B···O3ii 0.98 2.58 3.459 (3) 150
C8—H8B···Cg1iii 0.99 2.74 3.698 (2) 164
C16—H16C···Cg1iv 0.98 2.68 3.518 (3) 144
C17—H17C···Cg2ii 0.98 2.76 3.560 (3) 140
C18—H18C···Cg2i 0.98 2.75 3.574 (3) 142

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6602).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Göker, H., Boykin, D. W. & Yildiz, S. (2005). Bioorg. Med. Chem. 13, 1707–1714. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S.-C., Hamel, T. H. & Lee, K.-H. (1998). J. Med. Chem. 41, 1155–1162. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002917/hb6602sup1.cif

e-68-0o664-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002917/hb6602Isup2.hkl

e-68-0o664-Isup2.hkl (221KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812002917/hb6602Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES