Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):o687. doi: 10.1107/S1600536812005181

2,3-Dihydro-1H-cyclo­penta­[b]naph­tha­len-1-ol

Ísmail Çelik a, Mehmet Akkurt b,*, Ahmet Tutar c, Ramazan Erenler d, Santiago García-Granda e
PMCID: PMC3295469  PMID: 22412580

Abstract

In the title compound, C13H12O, the cyclo­pentene ring fused with the naphthalene group adopts an envelope conformation. The cyclo­pentene torsion angle, with the fusion bond at the centre, has a magnitude of 1.16 (16)°. In the crystal, neigh­bouring mol­ecules are connected through O—H⋯O hydrogen bonds into an R 4 4(8) ring motif. The crystal packing also features weak π–π stacking inter­actions [centroid–centroid distance = 3.8981 (8) Å] and C—H⋯π inter­actions.

Related literature  

For the synthesis of the title compound, see: Carpino & Lin (1990). For the crystal structure of a similar compound, see: Çelik et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For graph-set analysis, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o687-scheme1.jpg

Experimental  

Crystal data  

  • C13H12O

  • M r = 184.23

  • Tetragonal, Inline graphic

  • a = 25.3105 (4) Å

  • c = 6.0995 (2) Å

  • V = 3907.47 (18) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 299 K

  • 0.46 × 0.17 × 0.11 mm

Data collection  

  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.884, T max = 0.936

  • 5702 measured reflections

  • 1791 independent reflections

  • 1580 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.126

  • S = 1.04

  • 1791 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812005181/qm2052sup1.cif

e-68-0o687-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005181/qm2052Isup2.hkl

e-68-0o687-Isup2.hkl (88.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005181/qm2052Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is a centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1i 0.93 (2) 1.78 (2) 2.7113 (15) 174.4 (18)
C3—H3⋯Cg2ii 0.93 2.71 3.633 (2) 171
C11—H11ACg2iii 0.97 2.89 3.706 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

The treatment of benz[f]indanone with sodium borohydride in THF/MeOH for 2 h afforded the corresponding benz[f]indan-1-ol in an 89% yield (Carpino & Lin, 1990). Two signal groups, aliphatic and aromatic were observed in 1H-NMR spectra. The H2 and H3 protons exhibited a AA'BB' splitting pattern. H1 appeared at lower magnetic field than the 2,3 H atoms. This is due to the electronegativity of oxygen atom attached to C-1. The signal observed at δ 5.39 as a broad singlet could be attributed to OH group. Moreover a thirteen line 13C-NMR spectrum supports the proposed structure. The exact configuration of the molecule was established by X-ray diffraction.

The molecular structure of the title compound (I) is shown in Fig. 1. All bond lengths and angles in the title compound (I) show normal values (Allen et al., 1987; Çelik et al., 2009). The cyclopentene ring (C8–C9/C11–C13) fused with the naphthalene group (C1–C10) adopts an envelope conformation [puckering parameters: Q(2) = 0.2503 (18) Å, φ(2) = 110.1 (4)°; (Cremer & Pople, 1975)] with atom C12 deviating from the ring plane. The naphthalene group is essentially planar with a maximum deviation of -0.013 (1) Å for C8. The torsion angles C9–C8–C13–O1 and C7–C8– C13–O1 are -141.52 (12) and 38.33 (19) °, respectively.

In the crystal, neighbouring molecules are linked with intermolecular O—H···O hydrogen bonds, forming R44(8) ring motifs (Bernstein et al., 1995). A weak π -π stacking interaction [Cg3···Cg3iii = 3.8981 (8) Å (symmetry code: (iii) = -x, -y, -z)] between the C5–C10 benzene rings and two C—H···π interactions contribute to the stabilization of the crystal packing.

Experimental

To an ice-cold, stirred solution of benz[f]indanone (4.0 g, 22 mmol) in THF/MeOH (30/20 ml) mixture was added NaBH4 (0.34 g, 8.8 mmol). The reaction mixture was allowed to warm to room temperature. After the completion of the reaction, 2 h, water was added to the reaction mixture which was extracted with diethyl ether (3×50 ml), dried over MgSO4 and concentrated in vacuo affording benz[f]indan-1-ol which was crystallized from hexane/chloroform as yellow needles (3.6 g, 89%). 1H-NMR (400 MHz, CDCl3): δ 2.0–2.09 (m, 2H, H2), 2.54–2.60 (m, 1H, H3), 2.94–3.02 (m, 1H, H3'), 3.18–3.26 (m, 1H, H1), 5.39 (brs, 1H, OH), 7.43–7.49 (m, 2H, ArH), 7.70 (brs, 1H, ArH), 7.80–7.85 (brs, 2H, ArH), 7.87 (brs, 1H, ArH); 13C-NMR (100 MHz, CDCl3): δ 29.3, 36.6, 75.9, 122.7, 122.9, 125.2, 125.8, 127.6, 128.2, 132.9, 133.9, 141.5, 144.3.

Refinement

The H atom of the hydroxyl group was located in a difference Fourier map and refined freely. Carbon-bound H-atoms were placed in calculated positions and refined with constrained C—H bond lengths of 0.93 Å for aromatic, 0.97 Å for methylene and 0.98 Å for methine H atoms, and Uiso(H) = 1.2 Ueq(C) allowing them to ride on the parent C atom. The (6 6 0), (-6 12 0) and (-2 6 0) reflections were omitted owing to bad disagreement.

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing and hydrogen bonding of the title compound, viewing down the c axis. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C13H12O Dx = 1.253 Mg m3
Mr = 184.23 Cu Kα radiation, λ = 1.5418 Å
Tetragonal, I41/a Cell parameters from 2801 reflections
Hall symbol: -I 4ad θ = 3.5–68.0°
a = 25.3105 (4) Å µ = 0.61 mm1
c = 6.0995 (2) Å T = 299 K
V = 3907.47 (18) Å3 Needle, colourless
Z = 16 0.46 × 0.17 × 0.11 mm
F(000) = 1568

Data collection

Agilent Xcalibur Ruby Gemini diffractometer 1791 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1580 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 10.2673 pixels mm-1 θmax = 68.2°, θmin = 3.5°
ω scans h = −30→18
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −25→28
Tmin = 0.884, Tmax = 0.936 l = −7→6
5702 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.8441P] where P = (Fo2 + 2Fc2)/3
1791 reflections (Δ/σ)max < 0.001
131 parameters Δρmax = 0.10 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.18860 (4) 0.01236 (4) 0.19317 (19) 0.0630 (4)
C1 0.03049 (6) −0.12900 (6) 0.2324 (3) 0.0625 (5)
C2 −0.00864 (7) −0.16213 (7) 0.1633 (3) 0.0760 (6)
C3 −0.03313 (7) −0.15412 (8) −0.0393 (4) 0.0800 (7)
C4 −0.01801 (6) −0.11348 (7) −0.1700 (3) 0.0717 (6)
C5 0.02266 (5) −0.07803 (6) −0.1061 (2) 0.0550 (4)
C6 0.04727 (5) −0.08598 (5) 0.1014 (2) 0.0505 (4)
C7 0.08716 (5) −0.05063 (5) 0.1706 (2) 0.0494 (4)
C8 0.10205 (5) −0.00984 (5) 0.0392 (2) 0.0487 (4)
C9 0.07840 (6) −0.00232 (5) −0.1682 (2) 0.0566 (4)
C10 0.03969 (6) −0.03549 (6) −0.2388 (2) 0.0615 (5)
C11 0.10340 (8) 0.04480 (6) −0.2785 (3) 0.0755 (6)
C12 0.15329 (8) 0.05519 (7) −0.1448 (3) 0.0794 (6)
C13 0.14311 (6) 0.03180 (5) 0.0832 (2) 0.0570 (4)
H1 0.04640 −0.13480 0.36780 0.0750*
H1O 0.2035 (8) −0.0143 (8) 0.108 (3) 0.084 (6)*
H2 −0.01910 −0.19020 0.25160 0.0910*
H3 −0.05990 −0.17680 −0.08470 0.0960*
H4 −0.03470 −0.10870 −0.30450 0.0860*
H7 0.10330 −0.05530 0.30630 0.0590*
H10 0.02430 −0.03020 −0.37550 0.0740*
H11A 0.07990 0.07510 −0.27460 0.0910*
H11B 0.11210 0.03690 −0.42990 0.0910*
H12A 0.16010 0.09280 −0.13440 0.0950*
H12B 0.18360 0.03830 −0.21260 0.0950*
H13 0.12710 0.05930 0.17480 0.0680*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0583 (6) 0.0621 (6) 0.0686 (7) −0.0038 (4) −0.0021 (5) −0.0055 (5)
C1 0.0597 (8) 0.0665 (8) 0.0614 (9) −0.0024 (6) 0.0036 (7) 0.0065 (7)
C2 0.0656 (9) 0.0701 (9) 0.0924 (13) −0.0087 (7) 0.0122 (9) −0.0013 (9)
C3 0.0583 (9) 0.0830 (11) 0.0987 (14) −0.0093 (8) 0.0023 (9) −0.0230 (10)
C4 0.0569 (8) 0.0917 (11) 0.0666 (10) 0.0124 (7) −0.0110 (7) −0.0251 (9)
C5 0.0505 (7) 0.0668 (8) 0.0476 (7) 0.0136 (6) −0.0029 (5) −0.0088 (6)
C6 0.0464 (6) 0.0588 (7) 0.0464 (7) 0.0077 (5) 0.0019 (5) 0.0000 (5)
C7 0.0496 (6) 0.0603 (7) 0.0384 (6) 0.0049 (5) −0.0036 (5) 0.0053 (5)
C8 0.0510 (7) 0.0548 (7) 0.0402 (6) 0.0094 (5) 0.0042 (5) 0.0032 (5)
C9 0.0703 (8) 0.0599 (8) 0.0396 (7) 0.0203 (6) 0.0043 (6) 0.0058 (6)
C10 0.0687 (9) 0.0767 (9) 0.0391 (7) 0.0237 (7) −0.0097 (6) −0.0025 (6)
C11 0.1115 (14) 0.0666 (9) 0.0485 (8) 0.0158 (9) 0.0098 (8) 0.0158 (7)
C12 0.0947 (12) 0.0727 (10) 0.0707 (11) −0.0038 (9) 0.0191 (9) 0.0210 (8)
C13 0.0636 (8) 0.0532 (7) 0.0541 (8) 0.0046 (6) 0.0085 (6) 0.0034 (6)

Geometric parameters (Å, º)

O1—C13 1.4205 (18) C9—C11 1.508 (2)
O1—H1O 0.93 (2) C11—C12 1.526 (3)
C1—C6 1.416 (2) C12—C13 1.533 (2)
C1—C2 1.364 (2) C1—H1 0.9300
C2—C3 1.397 (3) C2—H2 0.9300
C3—C4 1.357 (3) C3—H3 0.9300
C4—C5 1.420 (2) C4—H4 0.9300
C5—C10 1.414 (2) C7—H7 0.9300
C5—C6 1.4249 (17) C10—H10 0.9300
C6—C7 1.4135 (18) C11—H11A 0.9700
C7—C8 1.3603 (18) C11—H11B 0.9700
C8—C13 1.5043 (19) C12—H12A 0.9700
C8—C9 1.4124 (18) C12—H12B 0.9700
C9—C10 1.360 (2) C13—H13 0.9800
C13—O1—H1O 108.4 (12) C6—C1—H1 120.00
C2—C1—C6 121.07 (16) C1—C2—H2 120.00
C1—C2—C3 120.40 (17) C3—C2—H2 120.00
C2—C3—C4 120.31 (17) C2—C3—H3 120.00
C3—C4—C5 121.49 (16) C4—C3—H3 120.00
C4—C5—C6 118.13 (13) C3—C4—H4 119.00
C6—C5—C10 118.86 (12) C5—C4—H4 119.00
C4—C5—C10 123.02 (13) C6—C7—H7 120.00
C1—C6—C5 118.61 (12) C8—C7—H7 120.00
C5—C6—C7 119.22 (12) C5—C10—H10 120.00
C1—C6—C7 122.18 (12) C9—C10—H10 120.00
C6—C7—C8 120.16 (11) C9—C11—H11A 111.00
C7—C8—C9 120.84 (12) C9—C11—H11B 111.00
C7—C8—C13 128.17 (11) C12—C11—H11A 111.00
C9—C8—C13 110.99 (11) C12—C11—H11B 111.00
C8—C9—C10 120.37 (12) H11A—C11—H11B 109.00
C8—C9—C11 109.16 (13) C11—C12—H12A 111.00
C10—C9—C11 130.46 (13) C11—C12—H12B 111.00
C5—C10—C9 120.55 (12) C13—C12—H12A 110.00
C9—C11—C12 104.18 (14) C13—C12—H12B 110.00
C11—C12—C13 106.21 (15) H12A—C12—H12B 109.00
O1—C13—C12 115.20 (13) O1—C13—H13 108.00
C8—C13—C12 102.99 (11) C8—C13—H13 108.00
O1—C13—C8 113.68 (10) C12—C13—H13 108.00
C2—C1—H1 119.00
C6—C1—C2—C3 −0.1 (3) C6—C7—C8—C13 179.66 (12)
C2—C1—C6—C5 −0.4 (2) C7—C8—C9—C10 0.9 (2)
C2—C1—C6—C7 179.04 (14) C7—C8—C9—C11 −178.70 (13)
C1—C2—C3—C4 0.4 (3) C13—C8—C9—C10 −179.25 (13)
C2—C3—C4—C5 −0.1 (3) C13—C8—C9—C11 1.16 (16)
C3—C4—C5—C6 −0.4 (2) C7—C8—C13—O1 38.33 (19)
C3—C4—C5—C10 179.53 (16) C7—C8—C13—C12 163.67 (14)
C4—C5—C6—C1 0.7 (2) C9—C8—C13—O1 −141.52 (12)
C4—C5—C6—C7 −178.80 (13) C9—C8—C13—C12 −16.18 (15)
C10—C5—C6—C1 −179.26 (13) C8—C9—C10—C5 −0.2 (2)
C10—C5—C6—C7 1.25 (19) C11—C9—C10—C5 179.32 (15)
C4—C5—C10—C9 179.17 (14) C8—C9—C11—C12 14.52 (17)
C6—C5—C10—C9 −0.9 (2) C10—C9—C11—C12 −165.02 (16)
C1—C6—C7—C8 179.97 (13) C9—C11—C12—C13 −24.27 (17)
C5—C6—C7—C8 −0.57 (19) C11—C12—C13—O1 148.97 (12)
C6—C7—C8—C9 −0.50 (19) C11—C12—C13—C8 24.64 (16)

Hydrogen-bond geometry (Å, º)

Cg2 is a centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
O1—H1O···O1i 0.93 (2) 1.78 (2) 2.7113 (15) 174.4 (18)
C3—H3···Cg2ii 0.93 2.71 3.633 (2) 171
C11—H11A···Cg2iii 0.97 2.89 3.706 (2) 142

Symmetry codes: (i) −y+1/4, x−1/4, z−1/4; (ii) −y−1/4, x−1/4, −z−1/4; (iii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2052).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Carpino, L. A. & Lin, Y.-Z. (1990). J. Org. Chem. 55, 247–250.
  5. Çelik, Í., Akkurt, M., Şenocak, A., Çakmak, O., Torre-Fernández, L. & García-Granda, S. (2009). Acta Cryst. E65, o1376. [DOI] [PMC free article] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812005181/qm2052sup1.cif

e-68-0o687-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005181/qm2052Isup2.hkl

e-68-0o687-Isup2.hkl (88.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005181/qm2052Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES