Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o694. doi: 10.1107/S1600536812004783

1,2,3-Trimeth­oxy-4,5,6-trinitro­benzene

Günter J Merten a, Christian Neis a, Kaspar Hegetschweiler a,*
PMCID: PMC3295474  PMID: 22412585

Abstract

In the title mol­ecule, C9H9N3O9, the three neighbouring nitro groups are tilted with respect to the benzene mean plane by 75.8 (1), 27.7 (1) and 68.1 (1)°. The methyl C atoms of the three neighbouring meth­oxy groups deviate from this plane by 0.976 (4), −1.425 (4) and 0.632 (4) Å. The crystal packing exhibits weak C—H⋯O inter­actions.

Related literature  

C—H⋯O hydrogen bonding has been reviewed by Castellano (2004). The use of aromatic polynitro compounds for the preparation of amino­cyclitols has been reported by Merten et al. (2012). The crystal structures of related highly substituted polynitro benzene derivatives with three meth­oxy or hy­droxy groups in a 1,2,3-arrangement have been reported by Vicente et al. (2009) and Neis et al. (2012), respectively.graphic file with name e-68-0o694-scheme1.jpg

Experimental  

Crystal data  

  • C9H9N3O9

  • M r = 303.19

  • Orthorhombic, Inline graphic

  • a = 8.1743 (4) Å

  • b = 16.6121 (9) Å

  • c = 9.0856 (5) Å

  • V = 1233.75 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 153 K

  • 0.18 × 0.15 × 0.11 mm

Data collection  

  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.974, T max = 0.984

  • 10563 measured reflections

  • 1580 independent reflections

  • 1254 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.081

  • S = 1.02

  • 1580 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004783/cv5240sup1.cif

e-68-0o694-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004783/cv5240Isup2.hkl

e-68-0o694-Isup2.hkl (77.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004783/cv5240Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O4i 0.98 2.53 3.450 (4) 156
C9—H9C⋯O9ii 0.98 2.59 3.536 (4) 161
C8—H8A⋯O5iii 0.98 2.44 3.352 (4) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

supplementary crystallographic information

Comment

Polynitrophenols and their methyl ethers are of interest as possible synthons for the preparation of corresponding aminocyclitols. The crystal structure of the title compound consists of wavy layers which are oriented parallel to the bc plane. In these layers, each molecule is surrounded by six neighbours, and the intermolecular contacts within these layers are mainly based on methoxy groups pointing to neighbouring nitro groups, indicating some weak C—H···O—N hydrogen bonding. Between the layers, some of the contacts such as O5···C1 (2.94 Å) are slightly shorter than the sum of the van der Waals radii. Similar to the structure of 4,6-dinitrobenzene-1,2,3-triol, this observation may indicate some weak donor acceptor interactions. However, it should be noted that the tilting of the nitro groups out of the aromatic plane, which is obviously enforced by the increased steric crowding, disfavours a closer approximation of aromatic moieties which are arranged in neighbouring layers.

Experimental

The title compound was obtained by nitration of 1,2,3-trimethoxybenzene. Caution: 1,2,3-trimethoxy-4,5,6-trinitrobenzene is a potential explosive. 1H NMR (CDCl3): δ (p.p.m.) = 4.10. 13C NMR (CDCl3): δ (p.p.m.) = 62.2, 63.4, 130.0, 135.4, 148.1, 151.7. Single crystals were grown by slow evaporation of a MeOH solution at room temperature.

Refinement

In the absence of significant anomalous scatterers, 932 Friedel pairs were merged before the refinement. H atoms were geometrically positioned (C—H 0.98 Å) and refined as riding, with Uiso(H) = 1.5Ueq of the pivot atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C9H9N3O9 Dx = 1.632 Mg m3
Mr = 303.19 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 2358 reflections
a = 8.1743 (4) Å θ = 2.6–22.6°
b = 16.6121 (9) Å µ = 0.15 mm1
c = 9.0856 (5) Å T = 153 K
V = 1233.75 (11) Å3 Prism, colourless
Z = 4 0.18 × 0.15 × 0.11 mm
F(000) = 624

Data collection

Bruker APEXII KappaCCD diffractometer 1580 independent reflections
Radiation source: fine-focus sealed tube 1254 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 28.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2010) h = −10→7
Tmin = 0.974, Tmax = 0.984 k = −17→21
10563 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1255P] where P = (Fo2 + 2Fc2)/3
1580 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7880 (2) 0.02818 (11) 0.3568 (2) 0.0325 (5)
O2 0.7134 (2) 0.08500 (12) 0.0745 (2) 0.0332 (5)
O3 0.6929 (3) 0.25609 (12) 0.0347 (2) 0.0355 (5)
O4 0.8581 (2) 0.38957 (11) 0.1784 (3) 0.0369 (5)
O5 0.6246 (2) 0.39213 (12) 0.2904 (3) 0.0387 (5)
O6 0.8947 (3) 0.36515 (13) 0.5039 (2) 0.0442 (6)
O7 0.8084 (3) 0.27870 (13) 0.6640 (2) 0.0383 (5)
O8 0.9907 (3) 0.13621 (13) 0.6231 (3) 0.0446 (6)
O9 0.7445 (3) 0.08999 (15) 0.6539 (2) 0.0485 (6)
N1 0.7478 (3) 0.35847 (12) 0.2482 (3) 0.0255 (5)
N2 0.8365 (3) 0.30026 (14) 0.5387 (3) 0.0287 (5)
N3 0.8482 (3) 0.12674 (13) 0.5858 (3) 0.0315 (5)
C1 0.7674 (3) 0.10752 (16) 0.3301 (3) 0.0245 (6)
C2 0.7350 (3) 0.13658 (16) 0.1884 (3) 0.0257 (6)
C3 0.7256 (3) 0.22000 (17) 0.1639 (3) 0.0261 (5)
C4 0.7609 (3) 0.27185 (16) 0.2797 (3) 0.0232 (6)
C5 0.7990 (3) 0.24349 (16) 0.4195 (3) 0.0233 (5)
C6 0.7997 (3) 0.16148 (17) 0.4432 (3) 0.0248 (6)
C7 0.6444 (4) −0.02228 (17) 0.3407 (4) 0.0408 (7)
H7A 0.5960 −0.0136 0.2433 0.061*
H7B 0.5643 −0.0084 0.4168 0.061*
H7C 0.6757 −0.0789 0.3510 0.061*
C8 0.8624 (4) 0.0513 (2) 0.0168 (4) 0.0471 (9)
H8A 0.8364 0.0143 −0.0638 0.071*
H8B 0.9197 0.0221 0.0949 0.071*
H8C 0.9324 0.0947 −0.0202 0.071*
C9 0.5854 (4) 0.21928 (19) −0.0721 (3) 0.0344 (7)
H9A 0.5431 0.2607 −0.1388 0.052*
H9B 0.4941 0.1932 −0.0211 0.052*
H9C 0.6463 0.1790 −0.1288 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0388 (11) 0.0224 (9) 0.0362 (12) 0.0018 (7) −0.0039 (9) −0.0010 (9)
O2 0.0433 (11) 0.0329 (11) 0.0235 (11) −0.0015 (8) −0.0006 (9) −0.0110 (9)
O3 0.0506 (11) 0.0346 (11) 0.0212 (10) −0.0119 (9) −0.0101 (10) 0.0024 (9)
O4 0.0423 (11) 0.0325 (11) 0.0360 (12) −0.0070 (9) 0.0115 (10) 0.0034 (9)
O5 0.0322 (10) 0.0330 (10) 0.0508 (14) 0.0058 (8) 0.0067 (10) −0.0058 (10)
O6 0.0585 (13) 0.0411 (12) 0.0331 (13) −0.0237 (11) −0.0018 (11) −0.0075 (10)
O7 0.0596 (14) 0.0359 (11) 0.0195 (11) 0.0048 (10) −0.0007 (10) −0.0029 (9)
O8 0.0416 (12) 0.0522 (13) 0.0401 (13) 0.0123 (10) −0.0188 (10) −0.0059 (10)
O9 0.0640 (15) 0.0502 (13) 0.0312 (13) −0.0101 (11) −0.0018 (11) 0.0120 (11)
N1 0.0282 (11) 0.0268 (12) 0.0216 (11) −0.0023 (9) 0.0006 (10) −0.0046 (11)
N2 0.0285 (11) 0.0332 (13) 0.0245 (14) 0.0013 (9) −0.0035 (10) −0.0063 (10)
N3 0.0431 (14) 0.0274 (12) 0.0240 (13) 0.0073 (10) −0.0068 (11) −0.0033 (10)
C1 0.0227 (12) 0.0268 (13) 0.0240 (15) 0.0017 (9) 0.0008 (11) −0.0022 (11)
C2 0.0274 (14) 0.0264 (13) 0.0234 (14) −0.0009 (10) 0.0003 (11) −0.0052 (11)
C3 0.0268 (13) 0.0326 (13) 0.0188 (13) −0.0028 (11) −0.0012 (11) −0.0023 (11)
C4 0.0216 (12) 0.0248 (13) 0.0232 (14) −0.0018 (10) 0.0024 (11) −0.0009 (11)
C5 0.0204 (11) 0.0276 (14) 0.0218 (14) 0.0013 (10) 0.0009 (10) −0.0066 (11)
C6 0.0240 (13) 0.0306 (13) 0.0198 (14) 0.0041 (10) −0.0027 (11) 0.0007 (11)
C7 0.0532 (19) 0.0317 (15) 0.0376 (17) −0.0101 (12) −0.0055 (16) 0.0010 (15)
C8 0.061 (2) 0.0464 (19) 0.0341 (19) 0.0180 (16) −0.0004 (15) −0.0148 (15)
C9 0.0383 (16) 0.0441 (17) 0.0209 (14) −0.0062 (12) −0.0039 (12) −0.0013 (13)

Geometric parameters (Å, º)

O1—C1 1.351 (3) C1—C6 1.389 (4)
O1—C7 1.451 (3) C1—C2 1.400 (4)
O2—C2 1.355 (3) C2—C3 1.406 (4)
O2—C8 1.439 (4) C3—C4 1.390 (4)
O3—C3 1.345 (3) C4—C5 1.390 (4)
O3—C9 1.445 (3) C5—C6 1.379 (4)
O4—N1 1.218 (3) C7—H7A 0.9800
O5—N1 1.214 (3) C7—H7B 0.9800
O6—N2 1.220 (3) C7—H7C 0.9800
O7—N2 1.215 (3) C8—H8A 0.9800
O8—N3 1.224 (3) C8—H8B 0.9800
O9—N3 1.214 (3) C8—H8C 0.9800
N1—C4 1.471 (3) C9—H9A 0.9800
N2—C5 1.469 (3) C9—H9B 0.9800
N3—C6 1.472 (4) C9—H9C 0.9800
C1—O1—C7 116.4 (2) C6—C5—C4 118.6 (2)
C2—O2—C8 114.4 (2) C6—C5—N2 121.2 (2)
C3—O3—C9 121.2 (2) C4—C5—N2 120.2 (2)
O5—N1—O4 125.7 (2) C5—C6—C1 121.4 (2)
O5—N1—C4 116.7 (2) C5—C6—N3 121.7 (2)
O4—N1—C4 117.5 (2) C1—C6—N3 116.7 (2)
O7—N2—O6 125.2 (2) O1—C7—H7A 109.5
O7—N2—C5 117.5 (2) O1—C7—H7B 109.5
O6—N2—C5 117.2 (2) H7A—C7—H7B 109.5
O9—N3—O8 126.0 (3) O1—C7—H7C 109.5
O9—N3—C6 117.2 (2) H7A—C7—H7C 109.5
O8—N3—C6 116.7 (2) H7B—C7—H7C 109.5
O1—C1—C6 118.2 (2) O2—C8—H8A 109.5
O1—C1—C2 121.7 (2) O2—C8—H8B 109.5
C6—C1—C2 119.6 (2) H8A—C8—H8B 109.5
O2—C2—C1 120.6 (2) O2—C8—H8C 109.5
O2—C2—C3 119.7 (2) H8A—C8—H8C 109.5
C1—C2—C3 119.7 (2) H8B—C8—H8C 109.5
O3—C3—C4 115.2 (2) O3—C9—H9A 109.5
O3—C3—C2 126.1 (3) O3—C9—H9B 109.5
C4—C3—C2 118.7 (2) H9A—C9—H9B 109.5
C3—C4—C5 121.9 (2) O3—C9—H9C 109.5
C3—C4—N1 116.4 (2) H9A—C9—H9C 109.5
C5—C4—N1 121.7 (2) H9B—C9—H9C 109.5
C7—O1—C1—C6 119.7 (3) O4—N1—C4—C5 106.2 (3)
C7—O1—C1—C2 −68.4 (3) C3—C4—C5—C6 −0.7 (4)
C8—O2—C2—C1 −77.5 (3) N1—C4—C5—C6 176.2 (2)
C8—O2—C2—C3 102.2 (3) C3—C4—C5—N2 179.7 (2)
O1—C1—C2—O2 4.1 (4) N1—C4—C5—N2 −3.5 (4)
C6—C1—C2—O2 175.8 (2) O7—N2—C5—C6 −26.9 (4)
O1—C1—C2—C3 −175.6 (2) O6—N2—C5—C6 152.5 (3)
C6—C1—C2—C3 −3.9 (4) O7—N2—C5—C4 152.7 (2)
C9—O3—C3—C4 −151.0 (2) O6—N2—C5—C4 −27.9 (3)
C9—O3—C3—C2 32.6 (4) C4—C5—C6—C1 1.6 (4)
O2—C2—C3—O3 1.4 (4) N2—C5—C6—C1 −178.7 (2)
C1—C2—C3—O3 −178.9 (2) C4—C5—C6—N3 176.3 (2)
O2—C2—C3—C4 −175.0 (2) N2—C5—C6—N3 −4.0 (4)
C1—C2—C3—C4 4.8 (4) O1—C1—C6—C5 172.7 (2)
O3—C3—C4—C5 −179.3 (2) C2—C1—C6—C5 0.7 (4)
C2—C3—C4—C5 −2.5 (4) O1—C1—C6—N3 −2.3 (3)
O3—C3—C4—N1 3.7 (3) C2—C1—C6—N3 −174.3 (2)
C2—C3—C4—N1 −179.5 (2) O9—N3—C6—C5 116.1 (3)
O5—N1—C4—C3 101.0 (3) O8—N3—C6—C5 −65.4 (3)
O4—N1—C4—C3 −76.8 (3) O9—N3—C6—C1 −69.0 (3)
O5—N1—C4—C5 −76.0 (3) O8—N3—C6—C1 109.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9B···O4i 0.98 2.53 3.450 (4) 156
C9—H9C···O9ii 0.98 2.59 3.536 (4) 161
C8—H8A···O5iii 0.98 2.44 3.352 (4) 154

Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x, y, z−1; (iii) −x+3/2, y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5240).

References

  1. Brandenburg, K. (2011). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2010). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Castellano, R. K. (2004). Curr. Org. Chem. 8, 845–865.
  4. Merten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31–35.
  5. Neis, C., Merten, G. J. & Hegetschweiler, K. (2012). Acta Cryst. E68, o695. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Vicente, J., Arcas, A., Galvez-Lopez, M.-D., Jones, P. G. & Bautista, D. (2009). Organometallics, 28, 3501–3517.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812004783/cv5240sup1.cif

e-68-0o694-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812004783/cv5240Isup2.hkl

e-68-0o694-Isup2.hkl (77.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812004783/cv5240Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES