Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o709. doi: 10.1107/S1600536812005661

(E)-2-Chloro-N′-(4-hy­droxy­benzyl­idene)­benzohydrazide

Xiao-Yan Li a,*
PMCID: PMC3295484  PMID: 22412595

Abstract

The title hydrazone mol­ecule, C14H11ClN2O2, has a trans conformation with respect to the methyl­idene unit. The dihedral angle between the two benzene rings is 37.6 (3)°. In the crystal, the presence of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds leads to the formation of a three-dimensional network. The title compound crystallized in the chiral ortho­rhom­bic space group P212121 and was refined as an inversion twin [Flack parameter = −0.20 (18)].

Related literature  

For the syntheses and crystal structures of hydrazone compounds, see: Hashemian et al. (2011); Lei (2011); Shalash et al. (2010). For the crystal structures of similar compounds, reported recently by the author, see: Li (2011a ,b ).graphic file with name e-68-0o709-scheme1.jpg

Experimental  

Crystal data  

  • C14H11ClN2O2

  • M r = 274.70

  • Orthorhombic, Inline graphic

  • a = 7.627 (3) Å

  • b = 11.859 (2) Å

  • c = 14.297 (2) Å

  • V = 1293.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.949, T max = 0.952

  • 6966 measured reflections

  • 2408 independent reflections

  • 1717 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.167

  • S = 1.07

  • 2408 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983), 999 Friedel pairs

  • Flack parameter: −0.20 (18)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812005661/su2376sup1.cif

e-68-0o709-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005661/su2376Isup2.hkl

e-68-0o709-Isup2.hkl (118.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005661/su2376Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.99 2.751 (4) 155
O2—H2⋯N2i 0.82 2.48 3.012 (4) 124
N1—H1⋯O2ii 0.90 (1) 2.12 (2) 2.987 (4) 164 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author is grateful to the Zibo Vocational Institute for supporting this work.

supplementary crystallographic information

Comment

In recent years, hydrazone compounds have attracted much attention due to their syntheses and crystal structures (Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010). As a continuation of our work on such compounds (Li, 2011a,b), the author reports herein on the crystal structure of the new title hydrazone compound.

The molecule of the title compound (Fig. 1) exists in a trans conformation with respect to the methylidene unit. The dihedral angle between the (C1–C6) and (C9–C1) benzene rings is 37.6 (3)°.

In the crystal, O–H···O, O–H···N, and N–H···O hydrogen bonds leads to the formation of a three-dimensional network (Table 1, Fig. 2).

Experimental

A mixture of 4-hydroxybenzaldehyde (0.122 g, 1 mmol) and 2-chlorobenzohydrazide (0.171 g, 1 mmol) in 30 ml of methanol containing few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Colourless crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution of the title compound in methanol.

Refinement

H atom H1 was located in a difference Fourier map and was freely refined. The remaining H-atoms were positioned geometrically and refined using a riding model: O–H = 0.82 Å, C–H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound. The various hydrogen bonds are indicated by dashed lines (see Table 1 for details; C-bound H-atoms have been omitted for clarity)..

Crystal data

C14H11ClN2O2 F(000) = 568
Mr = 274.70 Dx = 1.411 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1608 reflections
a = 7.627 (3) Å θ = 2.2–24.3°
b = 11.859 (2) Å µ = 0.29 mm1
c = 14.297 (2) Å T = 298 K
V = 1293.2 (5) Å3 Block, colourless
Z = 4 0.18 × 0.17 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2408 independent reflections
Radiation source: fine-focus sealed tube 1717 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→8
Tmin = 0.949, Tmax = 0.952 k = −14→9
6966 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.1245P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2408 reflections Δρmax = 0.74 e Å3
176 parameters Δρmin = −0.35 e Å3
1 restraint Absolute structure: Flack (1983), 999 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.20 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.7790 (2) 1.15240 (11) 0.03121 (11) 0.0961 (6)
N1 0.8701 (5) 0.7962 (3) 0.0532 (2) 0.0446 (9)
N2 0.8920 (5) 0.7314 (3) −0.0268 (2) 0.0442 (8)
O1 0.9755 (4) 0.9473 (2) −0.02416 (18) 0.0479 (8)
O2 0.8755 (4) 0.3362 (2) −0.32680 (17) 0.0439 (7)
H2 0.9466 0.3582 −0.3657 0.066*
C1 0.8856 (5) 0.9734 (3) 0.1347 (3) 0.0405 (10)
C2 0.8308 (6) 1.0829 (4) 0.1335 (3) 0.0521 (12)
C3 0.8123 (6) 1.1435 (5) 0.2166 (4) 0.0698 (15)
H3 0.7742 1.2180 0.2156 0.084*
C4 0.8506 (8) 1.0924 (6) 0.2987 (4) 0.0780 (18)
H4 0.8395 1.1328 0.3541 0.094*
C5 0.9046 (7) 0.9840 (6) 0.3022 (3) 0.0729 (16)
H5 0.9287 0.9510 0.3598 0.087*
C6 0.9240 (6) 0.9228 (5) 0.2230 (3) 0.0551 (12)
H6 0.9621 0.8484 0.2260 0.066*
C7 0.9150 (5) 0.9061 (3) 0.0472 (3) 0.0368 (9)
C8 0.8585 (5) 0.6256 (3) −0.0187 (3) 0.0408 (9)
H8 0.8278 0.5966 0.0395 0.049*
C9 0.8678 (5) 0.5508 (3) −0.0988 (2) 0.0375 (9)
C10 0.8151 (6) 0.4403 (3) −0.0916 (3) 0.0430 (10)
H10 0.7773 0.4128 −0.0341 0.052*
C11 0.8172 (6) 0.3700 (3) −0.1673 (3) 0.0433 (10)
H11 0.7812 0.2955 −0.1607 0.052*
C12 0.8724 (5) 0.4086 (3) −0.2536 (2) 0.0335 (8)
C13 0.9259 (5) 0.5197 (3) −0.2627 (3) 0.0387 (9)
H13 0.9637 0.5465 −0.3204 0.046*
C14 0.9231 (5) 0.5905 (3) −0.1863 (3) 0.0413 (10)
H14 0.9581 0.6652 −0.1929 0.050*
H1 0.802 (6) 0.767 (4) 0.098 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1370 (15) 0.0600 (8) 0.0912 (11) 0.0223 (9) 0.0056 (10) 0.0157 (8)
N1 0.062 (2) 0.0378 (19) 0.0339 (18) −0.0073 (18) 0.0079 (17) −0.0053 (14)
N2 0.062 (2) 0.0404 (19) 0.0304 (17) −0.0049 (17) 0.0069 (18) −0.0085 (15)
O1 0.069 (2) 0.0401 (15) 0.0349 (14) −0.0095 (14) 0.0108 (14) −0.0016 (13)
O2 0.063 (2) 0.0377 (15) 0.0310 (14) −0.0025 (15) 0.0058 (13) −0.0083 (12)
C1 0.040 (2) 0.043 (2) 0.038 (2) −0.007 (2) 0.0070 (18) −0.0085 (18)
C2 0.054 (3) 0.047 (3) 0.055 (3) −0.010 (2) 0.011 (2) −0.012 (2)
C3 0.061 (3) 0.057 (3) 0.091 (4) −0.013 (3) 0.025 (3) −0.027 (3)
C4 0.074 (4) 0.094 (5) 0.066 (4) −0.027 (4) 0.015 (3) −0.041 (3)
C5 0.078 (4) 0.102 (5) 0.039 (3) −0.013 (4) −0.003 (2) −0.013 (3)
C6 0.057 (3) 0.076 (3) 0.032 (2) −0.010 (2) 0.0049 (19) −0.014 (2)
C7 0.039 (2) 0.038 (2) 0.033 (2) −0.0001 (18) 0.0004 (17) −0.0018 (17)
C8 0.048 (2) 0.044 (2) 0.0309 (19) −0.002 (2) −0.0013 (19) −0.0076 (17)
C9 0.042 (2) 0.037 (2) 0.0332 (19) 0.001 (2) 0.0016 (17) −0.0013 (17)
C10 0.061 (3) 0.038 (2) 0.0300 (19) 0.002 (2) 0.0041 (18) 0.0006 (17)
C11 0.060 (3) 0.030 (2) 0.040 (2) 0.0002 (19) 0.006 (2) 0.0002 (16)
C12 0.038 (2) 0.0296 (19) 0.0330 (19) 0.0046 (17) −0.0029 (16) −0.0027 (15)
C13 0.044 (2) 0.044 (2) 0.0284 (19) 0.0010 (18) 0.0038 (16) 0.0011 (17)
C14 0.054 (3) 0.030 (2) 0.040 (2) −0.0063 (19) 0.0028 (19) −0.0012 (17)

Geometric parameters (Å, º)

Cl1—C2 1.724 (5) C5—C6 1.353 (6)
N1—C7 1.350 (5) C5—H5 0.9300
N1—N2 1.388 (4) C6—H6 0.9300
N1—H1 0.896 (10) C8—C9 1.450 (5)
N2—C8 1.286 (5) C8—H8 0.9300
O1—C7 1.222 (5) C9—C10 1.375 (5)
O2—C12 1.354 (4) C9—C14 1.402 (5)
O2—H2 0.8200 C10—C11 1.366 (5)
C1—C2 1.364 (6) C10—H10 0.9300
C1—C6 1.429 (6) C11—C12 1.382 (5)
C1—C7 1.500 (5) C11—H11 0.9300
C2—C3 1.396 (7) C12—C13 1.384 (5)
C3—C4 1.353 (8) C13—C14 1.377 (5)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.350 (9) C14—H14 0.9300
C4—H4 0.9300
C7—N1—N2 116.9 (3) O1—C7—C1 122.7 (3)
C7—N1—H1 125 (3) N1—C7—C1 115.1 (3)
N2—N1—H1 116 (3) N2—C8—C9 121.1 (4)
C8—N2—N1 116.2 (3) N2—C8—H8 119.5
C12—O2—H2 109.5 C9—C8—H8 119.5
C2—C1—C6 118.3 (4) C10—C9—C14 118.3 (3)
C2—C1—C7 122.8 (4) C10—C9—C8 120.7 (3)
C6—C1—C7 118.8 (4) C14—C9—C8 120.9 (3)
C1—C2—C3 120.7 (5) C11—C10—C9 121.3 (4)
C1—C2—Cl1 122.4 (3) C11—C10—H10 119.3
C3—C2—Cl1 116.9 (4) C9—C10—H10 119.3
C4—C3—C2 119.1 (5) C10—C11—C12 120.5 (3)
C4—C3—H3 120.5 C10—C11—H11 119.7
C2—C3—H3 120.5 C12—C11—H11 119.7
C5—C4—C3 121.6 (5) O2—C12—C11 119.0 (3)
C5—C4—H4 119.2 O2—C12—C13 121.8 (3)
C3—C4—H4 119.2 C11—C12—C13 119.3 (3)
C4—C5—C6 120.9 (5) C14—C13—C12 120.1 (3)
C4—C5—H5 119.6 C14—C13—H13 120.0
C6—C5—H5 119.6 C12—C13—H13 120.0
C5—C6—C1 119.5 (5) C13—C14—C9 120.5 (4)
C5—C6—H6 120.3 C13—C14—H14 119.7
C1—C6—H6 120.3 C9—C14—H14 119.7
O1—C7—N1 122.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.99 2.751 (4) 155
O2—H2···N2i 0.82 2.48 3.012 (4) 124
N1—H1···O2ii 0.90 (1) 2.12 (2) 2.987 (4) 164 (5)

Symmetry codes: (i) −x+2, y−1/2, −z−1/2; (ii) −x+3/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2376).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171. [DOI] [PMC free article] [PubMed]
  4. Lei, Y. (2011). Acta Cryst. E67, o162. [DOI] [PMC free article] [PubMed]
  5. Li, X.-Y. (2011a). Acta Cryst. E67, o1798. [DOI] [PMC free article] [PubMed]
  6. Li, X.-Y. (2011b). Acta Cryst. E67, o2511. [DOI] [PMC free article] [PubMed]
  7. Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812005661/su2376sup1.cif

e-68-0o709-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005661/su2376Isup2.hkl

e-68-0o709-Isup2.hkl (118.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005661/su2376Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES