Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o715–o716. doi: 10.1107/S1600536812005818

10α-Hy­droxy-13-{[4-(4-meth­oxy­phen­yl)piperazin-1-yl]meth­yl}-4,9-dimethyl-3,8,15-trioxatetra­cyclo­[10.3.0.02,4.07,9]penta­decan-14-one

Mohamed Moumou a, Ahmed Benharref b, Jean Claude Daran c, Rachid Outouch b,*, Moha Berraho b
PMCID: PMC3295488  PMID: 22412599

Abstract

The title compound, C26H36N2O6, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxa-tricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five- and ten-membered rings with two additional ep­oxy ring systems and a meth­oxy­phenyl­piperazine group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring shows an envelope conformation with the C atom closest to the hy­droxy group forming the flap. The mol­ecular conformation is determined by an O—H⋯N hydrogen bond between the hy­droxy group and a piperazine N atom. The crystal structure is built up by weak C—H⋯O inter­actions.

Related literature  

For background to the medicinal uses of the plant Anvillea adiata, see: Abdel Sattar et al. (1996); El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For the synthetic procedure, see: Moumou et al. (2010).graphic file with name e-68-0o715-scheme1.jpg

Experimental  

Crystal data  

  • C26H36N2O6

  • M r = 472.57

  • Orthorhombic, Inline graphic

  • a = 8.0770 (7) Å

  • b = 10.2667 (10) Å

  • c = 28.937 (3) Å

  • V = 2399.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.27 × 0.21 × 0.06 mm

Data collection  

  • Agilent Xcalibur Sapphire1 long nozzle diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.732, T max = 1.000

  • 14543 measured reflections

  • 2810 independent reflections

  • 1704 reflections with I > 2σ(I)

  • R int = 0.091

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.188

  • S = 1.04

  • 2810 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005818/im2357sup1.cif

e-68-0o715-sup1.cif (32.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005818/im2357Isup2.hkl

e-68-0o715-Isup2.hkl (135.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005818/im2357Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.10 2.901 (6) 165
C9—H9B⋯O1i 0.97 2.50 3.345 (7) 145
C14—H14⋯O5ii 0.98 2.49 3.447 (7) 165
C15—H15⋯O2i 0.98 2.51 3.342 (7) 142
C24—H24⋯O2i 0.98 2.33 3.185 (7) 146
C33—H33⋯O3iii 0.93 2.53 3.335 (10) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

The natural sesquiterpene lactone, 9α -hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al. (1996). The reactivity of this sesquiterpene lactone and its derivatives have been the subject of several studies (Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009), in order to prepare products with high value which can be used in the pharmacological industry. In this context, we have synthesed, from 9α-hydroxyparthenolide, the 1β,10α-epoxy-9α-hydoxypartenolide (10α-hydroxy-4,9-dimethyl-13-methylen-3,8,15-dioxa-tetracyclo [10.3.0.02,4.07,9] pentadecan-14-one) (Moumou et al., 2010). This epoxy-hydroxypartenolide treated with one equivalent of 1-(4-methoxyphenyl)-piperazine gives the title compound (I). The crystal structure of (I) is reported herein. The molecule contains a fused ring system and the methoxyphenyl-piperazine group as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by the puckering parameters Q = 0.297 (3) Å and φ =101.7 (8)° (Cremer & Pople, 1975). The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.579 (3) Å, θ = 2.0 (4)° and φ2 =359 (10)°. In the crystal, C—H···O hydrogen bonding links the molecules into sheets lying parallel to the bc plane (Table 1, Fig.2). In addition, an intramolecular O1—H1···N1 hydrogen bond is also observed.

Experimental

The mixture of 1β,10α-epoxy-9α-hydoxypartenolide (10α-hydroxy- 4,9-dimethyl-13-methylen-3,8,15-dioxa-tetracyclo [10.3.0.02,4.07,9] pentadecan-14-one) (500 mg, 1.78 mmol) and one equivalent of 1-(4-methoxyphenyl-piperazine) in EtOH (20 ml) was stirred for twelve hours at room temperature. Then the reaction was stopped by adding water (10 ml) and the solution was extracted with chloroform (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 730 mg (1.8 mmol) of the title compound (yield: 90%). Recrystallization was performed from in ethyl acetate.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

: Partial packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C26H36N2O6 F(000) = 1016
Mr = 472.57 Dx = 1.308 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4896 reflections
a = 8.0770 (7) Å θ = 2.9–26.4°
b = 10.2667 (10) Å µ = 0.09 mm1
c = 28.937 (3) Å T = 180 K
V = 2399.5 (4) Å3 Platelet, colourless
Z = 4 0.27 × 0.21 × 0.06 mm

Data collection

Agilent Xcalibur Sapphire1 long nozzle diffractometer 2810 independent reflections
Radiation source: fine-focus sealed tube 1704 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.091
Detector resolution: 8.2632 pixels mm-1 θmax = 26.4°, θmin = 2.9°
ω scan h = −10→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→12
Tmin = 0.732, Tmax = 1.000 l = −35→36
14543 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072 H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.099P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
2810 reflections Δρmax = 0.29 e Å3
312 parameters Δρmin = −0.32 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.015 (3)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies)
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C31 2.1349 (10) 0.2714 (15) −0.2812 (3) 0.113 (5)
H31A 2.1795 0.3123 −0.2541 0.169*
H31B 2.2203 0.2632 −0.3041 0.169*
H31C 2.0937 0.1866 −0.2734 0.169*
O4 0.8235 (5) 0.3794 (4) 0.00693 (14) 0.0333 (11)
O1 1.3161 (5) 0.6411 (4) −0.04954 (14) 0.0362 (10)
H1 1.2985 0.5931 −0.0716 0.054*
O2 1.3704 (5) 0.7880 (4) 0.02594 (14) 0.0356 (10)
C4 0.8345 (7) 0.3744 (5) −0.0395 (2) 0.0315 (15)
O3 0.8874 (5) 0.4797 (4) 0.10678 (14) 0.0365 (11)
O5 0.7156 (6) 0.3568 (4) −0.06296 (16) 0.0489 (13)
N1 1.1958 (6) 0.4608 (5) −0.11902 (17) 0.0347 (12)
C8 1.5793 (8) 0.3993 (7) −0.2180 (2) 0.0376 (15)
C9 1.0557 (7) 0.6789 (6) 0.1189 (2) 0.0333 (14)
H9A 1.0636 0.6833 0.1523 0.040*
H9B 0.9534 0.7212 0.1098 0.040*
C10 1.2454 (8) 0.3285 (5) −0.1318 (2) 0.0334 (14)
H10A 1.1671 0.2935 −0.1540 0.040*
H10B 1.2433 0.2733 −0.1046 0.040*
C11 1.4177 (7) 0.3273 (6) −0.1526 (2) 0.0374 (15)
H11A 1.4968 0.3577 −0.1298 0.045*
H11B 1.4472 0.2387 −0.1609 0.045*
N2 1.4267 (6) 0.4099 (5) −0.19340 (17) 0.0346 (13)
C13 1.0497 (7) 0.5390 (6) 0.1044 (2) 0.0296 (14)
C14 0.9858 (7) 0.4080 (5) 0.0276 (2) 0.0281 (14)
H14 1.0345 0.3305 0.0419 0.034*
C15 0.9541 (7) 0.5129 (5) 0.0624 (2) 0.0293 (14)
H15 0.9042 0.5913 0.0490 0.035*
C16 1.2353 (7) 0.7204 (5) 0.0486 (2) 0.0287 (14)
H16 1.1358 0.7098 0.0296 0.034*
C17 1.1864 (7) 0.4527 (6) 0.1208 (2) 0.0355 (15)
H17A 1.1843 0.4482 0.1539 0.053*
H17B 1.2908 0.4875 0.1109 0.053*
H17C 1.1720 0.3670 0.1082 0.053*
C18 1.3777 (7) 0.5670 (6) −0.0123 (2) 0.0322 (14)
H18 1.4918 0.5425 −0.0199 0.039*
C19 1.2032 (7) 0.7534 (5) 0.0975 (2) 0.0328 (14)
H19A 1.1819 0.8462 0.0998 0.039*
H19B 1.3019 0.7348 0.1154 0.039*
C20 1.3840 (7) 0.6487 (5) 0.0314 (2) 0.0315 (14)
C21 1.5243 (8) 0.6110 (7) 0.0626 (2) 0.0424 (17)
H21A 1.6269 0.6401 0.0494 0.064*
H21B 1.5266 0.5180 0.0660 0.064*
H21C 1.5093 0.6508 0.0923 0.064*
C22 1.2032 (9) 0.5405 (6) −0.1613 (2) 0.0437 (16)
H22A 1.1713 0.6292 −0.1540 0.052*
H22B 1.1249 0.5067 −0.1837 0.052*
C23 1.0127 (8) 0.3903 (6) −0.0541 (2) 0.0325 (14)
H23 1.0620 0.3035 −0.0571 0.039*
C24 1.0916 (7) 0.4580 (5) −0.0123 (2) 0.0300 (14)
H24 1.0704 0.5515 −0.0154 0.036*
C25 1.3730 (8) 0.5406 (6) −0.1820 (2) 0.0398 (16)
H25A 1.3729 0.5936 −0.2098 0.048*
H25B 1.4504 0.5790 −0.1603 0.048*
C26 1.2791 (7) 0.4403 (5) −0.0058 (2) 0.0308 (14)
H26A 1.3186 0.3760 −0.0277 0.037*
H26B 1.2996 0.4067 0.0250 0.037*
C27 1.8662 (8) 0.3621 (8) −0.2705 (2) 0.051 (2)
C28 1.7086 (8) 0.3259 (7) −0.2023 (2) 0.0457 (18)
H28 1.7012 0.2874 −0.1732 0.055*
C29 1.0275 (8) 0.4595 (6) −0.1002 (2) 0.0383 (15)
H29A 0.9547 0.4172 −0.1223 0.046*
H29B 0.9899 0.5486 −0.0966 0.046*
C30 1.8521 (8) 0.3069 (8) −0.2287 (3) 0.051 (2)
H30 1.9378 0.2559 −0.2171 0.061*
O6 2.0017 (7) 0.3498 (8) −0.29937 (17) 0.086 (2)
C32 1.5986 (9) 0.4555 (8) −0.2613 (2) 0.054 (2)
H32 1.5121 0.5050 −0.2732 0.065*
C33 1.7365 (10) 0.4416 (10) −0.2869 (3) 0.072 (3)
H33 1.7463 0.4840 −0.3152 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C31 0.031 (5) 0.259 (16) 0.048 (5) −0.009 (7) 0.004 (4) −0.012 (8)
O4 0.021 (2) 0.025 (2) 0.053 (3) −0.0027 (17) −0.001 (2) 0.0020 (19)
O1 0.032 (2) 0.034 (2) 0.042 (2) −0.001 (2) 0.003 (2) 0.006 (2)
O2 0.029 (2) 0.025 (2) 0.053 (3) −0.0114 (18) 0.005 (2) 0.005 (2)
C4 0.020 (3) 0.027 (3) 0.047 (4) −0.002 (2) −0.007 (3) 0.003 (3)
O3 0.028 (2) 0.036 (2) 0.045 (3) −0.0047 (19) 0.005 (2) 0.002 (2)
O5 0.039 (3) 0.040 (3) 0.067 (3) −0.006 (2) −0.015 (3) −0.004 (2)
N1 0.037 (3) 0.028 (3) 0.039 (3) 0.004 (2) 0.001 (3) 0.004 (2)
C8 0.037 (4) 0.046 (4) 0.029 (4) −0.006 (3) −0.002 (3) −0.001 (3)
C9 0.032 (3) 0.026 (3) 0.042 (4) 0.002 (3) −0.004 (3) −0.001 (3)
C10 0.042 (4) 0.020 (3) 0.039 (4) 0.010 (3) 0.005 (3) 0.003 (3)
C11 0.033 (4) 0.035 (3) 0.044 (4) 0.000 (3) 0.004 (3) 0.008 (3)
N2 0.037 (3) 0.026 (3) 0.041 (3) −0.001 (2) −0.003 (2) 0.005 (2)
C13 0.026 (3) 0.022 (3) 0.041 (4) 0.001 (2) 0.001 (3) 0.002 (3)
C14 0.021 (3) 0.020 (3) 0.044 (4) −0.001 (2) −0.001 (3) 0.001 (3)
C15 0.026 (3) 0.023 (3) 0.039 (4) 0.003 (2) 0.008 (3) 0.002 (3)
C16 0.022 (3) 0.021 (3) 0.043 (4) −0.012 (2) 0.004 (3) 0.005 (3)
C17 0.034 (3) 0.029 (3) 0.044 (4) 0.004 (3) 0.001 (3) 0.010 (3)
C18 0.028 (3) 0.038 (3) 0.030 (3) 0.001 (3) 0.000 (3) 0.006 (3)
C19 0.028 (3) 0.021 (3) 0.049 (4) −0.002 (2) −0.002 (3) 0.003 (3)
C20 0.032 (3) 0.020 (3) 0.043 (4) −0.001 (3) −0.002 (3) 0.005 (3)
C21 0.025 (3) 0.049 (4) 0.053 (4) −0.007 (3) −0.004 (3) 0.002 (3)
C22 0.051 (4) 0.030 (3) 0.050 (4) 0.006 (3) 0.002 (4) 0.005 (3)
C23 0.030 (3) 0.026 (3) 0.041 (4) 0.006 (3) 0.000 (3) −0.005 (3)
C24 0.032 (3) 0.019 (3) 0.039 (4) 0.001 (3) 0.000 (3) 0.001 (3)
C25 0.055 (4) 0.024 (3) 0.040 (4) 0.005 (3) −0.008 (3) 0.004 (3)
C26 0.020 (3) 0.026 (3) 0.046 (4) 0.004 (2) 0.005 (3) 0.005 (3)
C27 0.034 (4) 0.085 (6) 0.034 (4) −0.012 (4) 0.007 (3) 0.001 (4)
C28 0.036 (4) 0.060 (5) 0.041 (4) −0.003 (4) 0.008 (3) 0.012 (3)
C29 0.041 (4) 0.036 (3) 0.038 (4) 0.010 (3) −0.002 (3) −0.001 (3)
C30 0.028 (4) 0.070 (5) 0.056 (5) 0.000 (4) 0.004 (3) −0.002 (4)
O6 0.047 (4) 0.168 (7) 0.042 (3) −0.019 (4) 0.014 (3) 0.002 (4)
C32 0.047 (4) 0.077 (5) 0.037 (4) −0.008 (4) −0.008 (3) 0.019 (4)
C33 0.054 (5) 0.124 (8) 0.037 (5) −0.012 (6) 0.005 (4) 0.025 (5)

Geometric parameters (Å, º)

C31—O6 1.442 (13) C16—C20 1.494 (8)
C31—H31A 0.9600 C16—H16 0.9800
C31—H31B 0.9600 C17—H17A 0.9600
C31—H31C 0.9600 C17—H17B 0.9600
O4—C4 1.347 (7) C17—H17C 0.9600
O4—C14 1.470 (7) C18—C20 1.518 (8)
O1—C18 1.410 (7) C18—C26 1.537 (8)
O1—H1 0.8200 C18—H18 0.9800
O2—C20 1.443 (7) C19—H19A 0.9700
O2—C16 1.449 (6) C19—H19B 0.9700
C4—O5 1.190 (7) C20—C21 1.500 (9)
C4—C23 1.509 (8) C21—H21A 0.9600
O3—C15 1.435 (7) C21—H21B 0.9600
O3—C13 1.447 (7) C21—H21C 0.9600
N1—C10 1.463 (7) C22—C25 1.497 (9)
N1—C29 1.464 (8) C22—H22A 0.9700
N1—C22 1.473 (8) C22—H22B 0.9700
C8—C28 1.366 (9) C23—C29 1.517 (8)
C8—C32 1.388 (9) C23—C24 1.532 (8)
C8—N2 1.428 (8) C23—H23 0.9800
C9—C13 1.497 (8) C24—C26 1.537 (8)
C9—C19 1.546 (8) C24—H24 0.9800
C9—H9A 0.9700 C25—H25A 0.9700
C9—H9B 0.9700 C25—H25B 0.9700
C10—C11 1.516 (8) C26—H26A 0.9700
C10—H10A 0.9700 C26—H26B 0.9700
C10—H10B 0.9700 C27—C30 1.341 (10)
C11—N2 1.457 (8) C27—O6 1.383 (8)
C11—H11A 0.9700 C27—C33 1.410 (11)
C11—H11B 0.9700 C28—C30 1.402 (10)
N2—C25 1.448 (8) C28—H28 0.9300
C13—C15 1.465 (9) C29—H29A 0.9700
C13—C17 1.493 (8) C29—H29B 0.9700
C14—C15 1.496 (8) C30—H30 0.9300
C14—C24 1.526 (8) C32—C33 1.345 (10)
C14—H14 0.9800 C32—H32 0.9300
C15—H15 0.9800 C33—H33 0.9300
C16—C19 1.477 (8)
O6—C31—H31A 109.5 O1—C18—H18 107.3
O6—C31—H31B 109.5 C20—C18—H18 107.3
H31A—C31—H31B 109.5 C26—C18—H18 107.3
O6—C31—H31C 109.5 C16—C19—C9 113.9 (5)
H31A—C31—H31C 109.5 C16—C19—H19A 108.8
H31B—C31—H31C 109.5 C9—C19—H19A 108.8
C4—O4—C14 110.7 (4) C16—C19—H19B 108.8
C18—O1—H1 109.5 C9—C19—H19B 108.8
C20—O2—C16 62.2 (4) H19A—C19—H19B 107.7
O5—C4—O4 121.5 (6) O2—C20—C16 59.1 (3)
O5—C4—C23 128.8 (6) O2—C20—C21 112.3 (5)
O4—C4—C23 109.7 (5) C16—C20—C21 122.3 (5)
C15—O3—C13 61.1 (4) O2—C20—C18 117.1 (5)
C10—N1—C29 109.9 (5) C16—C20—C18 121.6 (5)
C10—N1—C22 107.1 (5) C21—C20—C18 112.5 (5)
C29—N1—C22 110.6 (5) C20—C21—H21A 109.5
C28—C8—C32 116.4 (6) C20—C21—H21B 109.5
C28—C8—N2 122.4 (6) H21A—C21—H21B 109.5
C32—C8—N2 121.0 (6) C20—C21—H21C 109.5
C13—C9—C19 112.8 (5) H21A—C21—H21C 109.5
C13—C9—H9A 109.0 H21B—C21—H21C 109.5
C19—C9—H9A 109.0 N1—C22—C25 111.7 (5)
C13—C9—H9B 109.0 N1—C22—H22A 109.3
C19—C9—H9B 109.0 C25—C22—H22A 109.3
H9A—C9—H9B 107.8 N1—C22—H22B 109.3
N1—C10—C11 111.1 (5) C25—C22—H22B 109.3
N1—C10—H10A 109.4 H22A—C22—H22B 107.9
C11—C10—H10A 109.4 C4—C23—C29 111.8 (5)
N1—C10—H10B 109.4 C4—C23—C24 103.0 (5)
C11—C10—H10B 109.4 C29—C23—C24 116.7 (5)
H10A—C10—H10B 108.0 C4—C23—H23 108.3
N2—C11—C10 111.2 (5) C29—C23—H23 108.3
N2—C11—H11A 109.4 C24—C23—H23 108.3
C10—C11—H11A 109.4 C14—C24—C23 102.2 (5)
N2—C11—H11B 109.4 C14—C24—C26 114.8 (5)
C10—C11—H11B 109.4 C23—C24—C26 117.0 (5)
H11A—C11—H11B 108.0 C14—C24—H24 107.5
C8—N2—C25 116.3 (5) C23—C24—H24 107.5
C8—N2—C11 113.8 (5) C26—C24—H24 107.5
C25—N2—C11 109.9 (5) N2—C25—C22 111.4 (5)
O3—C13—C15 59.0 (4) N2—C25—H25A 109.3
O3—C13—C17 113.9 (5) C22—C25—H25A 109.3
C15—C13—C17 123.0 (5) N2—C25—H25B 109.3
O3—C13—C9 114.8 (5) C22—C25—H25B 109.3
C15—C13—C9 115.2 (5) H25A—C25—H25B 108.0
C17—C13—C9 117.2 (5) C24—C26—C18 113.3 (5)
O4—C14—C15 105.3 (4) C24—C26—H26A 108.9
O4—C14—C24 105.0 (4) C18—C26—H26A 108.9
C15—C14—C24 111.3 (4) C24—C26—H26B 108.9
O4—C14—H14 111.6 C18—C26—H26B 108.9
C15—C14—H14 111.6 H26A—C26—H26B 107.7
C24—C14—H14 111.6 C30—C27—O6 125.0 (7)
O3—C15—C13 59.8 (4) C30—C27—C33 119.0 (7)
O3—C15—C14 119.7 (5) O6—C27—C33 115.9 (7)
C13—C15—C14 126.9 (5) C8—C28—C30 121.8 (7)
O3—C15—H15 113.3 C8—C28—H28 119.1
C13—C15—H15 113.3 C30—C28—H28 119.1
C14—C15—H15 113.3 N1—C29—C23 113.8 (5)
O2—C16—C19 117.1 (5) N1—C29—H29A 108.8
O2—C16—C20 58.7 (3) C23—C29—H29A 108.8
C19—C16—C20 125.0 (5) N1—C29—H29B 108.8
O2—C16—H16 114.7 C23—C29—H29B 108.8
C19—C16—H16 114.7 H29A—C29—H29B 107.7
C20—C16—H16 114.7 C27—C30—C28 120.2 (7)
C13—C17—H17A 109.5 C27—C30—H30 119.9
C13—C17—H17B 109.5 C28—C30—H30 119.9
H17A—C17—H17B 109.5 C27—O6—C31 114.9 (6)
C13—C17—H17C 109.5 C33—C32—C8 123.1 (7)
H17A—C17—H17C 109.5 C33—C32—H32 118.5
H17B—C17—H17C 109.5 C8—C32—H32 118.5
O1—C18—C20 110.5 (5) C32—C33—C27 119.4 (7)
O1—C18—C26 111.5 (5) C32—C33—H33 120.3
C20—C18—C26 112.5 (5) C27—C33—H33 120.3

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 2.10 2.901 (6) 165
C9—H9B···O1i 0.97 2.50 3.345 (7) 145
C14—H14···O5ii 0.98 2.49 3.447 (7) 165
C15—H15···O2i 0.98 2.51 3.342 (7) 142
C24—H24···O2i 0.98 2.33 3.185 (7) 146
C33—H33···O3iii 0.93 2.53 3.335 (10) 145

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x+1/2, −y+1/2, −z; (iii) −x+5/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2357).

References

  1. Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405. [DOI] [PubMed]
  2. Agilent (2010). CrysAlis PRO Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91. [DOI] [PubMed]
  8. Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395. [DOI] [PMC free article] [PubMed]
  9. Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349. [DOI] [PubMed]
  10. Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D’Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510. [DOI] [PubMed]
  11. Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005818/im2357sup1.cif

e-68-0o715-sup1.cif (32.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005818/im2357Isup2.hkl

e-68-0o715-Isup2.hkl (135.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005818/im2357Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES