Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o717–o718. doi: 10.1107/S1600536812006009

3-Benzyl-6-methyl-2-sulfanylidene-2,3-di­hydroquinazolin-4(1H)-one

Rashad Al-Salahi a, Mohamed Al-Omar b, Hussein El-Subbagh c, Madhukar Hemamalini d, Hoong-Kun Fun d,*,
PMCID: PMC3295489  PMID: 22412600

Abstract

In the title compound, C16H14N2OS, the quinazoline ring system is essentially planar, with a maximum deviation of 0.029 (3) Å. The dihedral angle between the quinazoline and benzene rings is 88.4 (2)°. In the crystal, adjacent mol­ecules are connected via pairs of N—H⋯S and C—H⋯O hydrogen bonds, which generate R 2 2(8) and R 2 2(10) graph-set motifs, respectively, resulting in a supra­molecular chain along the a axis.

Related literature  

For details and applications of quinazoline compounds, see: Roth & Fenner (2000); Jantova et al. (2004); Harris & Thorarensen (2004); Andries et al. (2005); Al-Rashood et al. (2006); Ghorab et al. (2007); Rádl et al. (2000); Klepser & Klepser (1997); Al-Omar et al. (2004); Al-Omary et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-0o717-scheme1.jpg

Experimental  

Crystal data  

  • C16H14N2OS

  • M r = 282.35

  • Monoclinic, Inline graphic

  • a = 24.2438 (18) Å

  • b = 5.1618 (5) Å

  • c = 24.4265 (17) Å

  • β = 111.532 (6)°

  • V = 2843.4 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 296 K

  • 0.83 × 0.12 × 0.06 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.289, T max = 0.890

  • 9528 measured reflections

  • 2592 independent reflections

  • 1421 reflections with I > 2σ(I)

  • R int = 0.104

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.166

  • S = 0.93

  • 2592 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006009/is5070sup1.cif

e-68-0o717-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006009/is5070Isup2.hkl

e-68-0o717-Isup2.hkl (124.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006009/is5070Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.50 3.335 (3) 165
C4—H4A⋯O1ii 0.93 2.41 3.295 (4) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RAS, MAO and HES express their gratitude to Mr Hazem Ghabbour, X-ray Division of the Pharmaceutical Chemistry Department, King Saud University, for valuable help in the determination of the X-ray crystal structure. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Quinazoline moiety is present in many classes of biologically-active compounds. A number of them have been clinically used as antifungal, antibacterial and antiprotozoic drugs (Roth & Fenner, 2000; Jantova et al., 2004; Harris & Thorarensen, 2004), as well as antituberculotic agents (Andries et al., 2005). Furthermore, they have drawn much attention due to their broad range of pharmacological properties which include antitumor (Al-Rashood et al., 2006), anticancer (Ghorab et al., 2007) and analgesic (Rádl et al., 2000) properties. Certain quinazoline analogs also showed remarkable activity against the opportunistic infections of Pneumocystis carinii and Toxoplasma gondii. Those microorganisms proved to be the priniciple cause of death in patients with immunocompromised diseases such as acquired immune deficiency syndrome (Klepser & Klepser, 1997). This work is a continuation of this program with the aim of obtaining an interesting series of quinazolines that contain the thioxo functional group which was identified as a possible pharmacophore of the antimicrobial activity (Al-Omar et al., 2004; Al-Omary et al., 2010).

The molecular structure of the title compound is shown in Fig. 1. The quinazoline (N1,N2/C1–C8) ring is essentially planar, with a maximum deviation of 0.029 (3) Å for atom C2. The dihedral angle between the quinazoline (N1,N2/C1–C8) and the benzene (C10–C15) rings is 88.4 (2)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal, (Fig. 2), the adjacent molecules are connected via a pair of N—H···S and C—H···O (Table 1) hydrogen bonds, generating R22(8) and R22(10) graph-set motifs (Bernstein et al., 1995), respectively, resulting in a supramolecular [100] chain.

Experimental

A mixture of benzyl isothiocyanate (10 mmol) and 2-amino-5-methyl benzoic acid (10 mmol) in ethanol (30 ml) was heated under reflux in the presence of triethylamine (5 mmol) for 2 h. After cooling, the mixture was poured into ice/water. The resulting solid was filtered, washed with water and dried. Recrystallization from ethanol gave 3-benzyl-2,3-dihydro-6-methyl-2-thioxo-quinazoline-4(1H)-one as colorless crystals.

Refinement

All H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing view of the title compound along the b axis.

Crystal data

C16H14N2OS F(000) = 1184
Mr = 282.35 Dx = 1.319 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2yc Cell parameters from 339 reflections
a = 24.2438 (18) Å θ = 3.9–53.5°
b = 5.1618 (5) Å µ = 1.99 mm1
c = 24.4265 (17) Å T = 296 K
β = 111.532 (6)° Needle, colourless
V = 2843.4 (4) Å3 0.83 × 0.12 × 0.06 mm
Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer 2592 independent reflections
Radiation source: fine-focus sealed tube 1421 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.104
φ and ω scans θmax = 69.8°, θmin = 3.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −29→29
Tmin = 0.289, Tmax = 0.890 k = −6→5
9528 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0875P)2] where P = (Fo2 + 2Fc2)/3
2592 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22029 (4) 0.1447 (2) 0.07055 (4) 0.0718 (3)
N1 0.17921 (10) 0.4985 (6) −0.01167 (11) 0.0630 (7)
H1A 0.2097 0.4590 −0.0199 0.076*
N2 0.12318 (10) 0.4401 (5) 0.04598 (11) 0.0574 (7)
O1 0.04534 (10) 0.7057 (5) 0.03541 (11) 0.0747 (7)
C1 0.17206 (13) 0.3706 (7) 0.03308 (14) 0.0594 (8)
C2 0.08423 (13) 0.6424 (7) 0.01808 (14) 0.0600 (8)
C3 0.09395 (12) 0.7664 (7) −0.03127 (13) 0.0585 (8)
C4 0.05611 (13) 0.9575 (7) −0.06444 (14) 0.0630 (9)
H4A 0.0243 1.0100 −0.0544 0.076*
C5 0.06438 (15) 1.0717 (7) −0.11196 (15) 0.0691 (9)
C6 0.11382 (16) 0.9891 (8) −0.12434 (16) 0.0763 (10)
H6A 0.1206 1.0638 −0.1559 0.092*
C7 0.15210 (15) 0.8048 (7) −0.09221 (15) 0.0715 (10)
H7A 0.1848 0.7578 −0.1013 0.086*
C8 0.14201 (13) 0.6879 (7) −0.04573 (14) 0.0578 (8)
C9 0.10920 (14) 0.2997 (7) 0.09172 (15) 0.0657 (9)
H9A 0.1263 0.1276 0.0958 0.079*
H9B 0.0665 0.2799 0.0788 0.079*
C10 0.13111 (14) 0.4281 (7) 0.15093 (14) 0.0641 (9)
C11 0.1103 (2) 0.3376 (10) 0.1930 (2) 0.0988 (15)
H11A 0.0831 0.2022 0.1840 0.119*
C12 0.1298 (3) 0.4483 (15) 0.2483 (2) 0.131 (2)
H12A 0.1144 0.3902 0.2758 0.157*
C13 0.1710 (3) 0.6401 (16) 0.2634 (2) 0.133 (2)
H13A 0.1854 0.7057 0.3015 0.160*
C14 0.1912 (2) 0.7364 (11) 0.2216 (2) 0.1082 (15)
H14A 0.2179 0.8737 0.2306 0.130*
C15 0.17129 (17) 0.6268 (8) 0.16567 (16) 0.0783 (11)
H15A 0.1856 0.6898 0.1377 0.094*
C16 0.02217 (18) 1.2711 (9) −0.14931 (18) 0.0893 (12)
H16B −0.0064 1.3143 −0.1321 0.134*
H16A 0.0021 1.2027 −0.1881 0.134*
H16C 0.0438 1.4238 −0.1516 0.134*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0640 (5) 0.0875 (7) 0.0707 (6) 0.0172 (4) 0.0327 (5) 0.0084 (5)
N1 0.0558 (14) 0.083 (2) 0.0576 (17) 0.0153 (13) 0.0295 (14) 0.0029 (15)
N2 0.0510 (13) 0.0688 (18) 0.0577 (16) 0.0036 (11) 0.0264 (13) −0.0049 (13)
O1 0.0601 (12) 0.0924 (19) 0.0855 (17) 0.0135 (11) 0.0430 (13) −0.0007 (13)
C1 0.0500 (16) 0.076 (2) 0.0554 (19) 0.0024 (14) 0.0231 (16) −0.0121 (17)
C2 0.0498 (16) 0.073 (2) 0.059 (2) 0.0022 (14) 0.0228 (16) −0.0124 (17)
C3 0.0472 (16) 0.076 (2) 0.051 (2) −0.0010 (14) 0.0169 (16) −0.0104 (17)
C4 0.0543 (17) 0.070 (2) 0.066 (2) 0.0069 (15) 0.0225 (17) −0.0068 (18)
C5 0.065 (2) 0.074 (2) 0.066 (2) 0.0057 (16) 0.0211 (18) −0.0006 (19)
C6 0.077 (2) 0.086 (3) 0.072 (2) 0.0089 (18) 0.035 (2) 0.008 (2)
C7 0.068 (2) 0.090 (3) 0.068 (2) 0.0134 (17) 0.0375 (19) 0.009 (2)
C8 0.0472 (16) 0.073 (2) 0.0540 (19) 0.0062 (13) 0.0194 (15) −0.0060 (16)
C9 0.0629 (19) 0.065 (2) 0.080 (2) −0.0013 (14) 0.0393 (19) −0.0001 (18)
C10 0.0643 (18) 0.074 (2) 0.063 (2) 0.0196 (16) 0.0343 (18) 0.0090 (18)
C11 0.115 (3) 0.114 (4) 0.090 (3) 0.020 (3) 0.065 (3) 0.028 (3)
C12 0.150 (6) 0.185 (7) 0.080 (4) 0.064 (5) 0.069 (4) 0.043 (4)
C13 0.131 (5) 0.196 (7) 0.068 (3) 0.061 (4) 0.031 (4) −0.018 (4)
C14 0.108 (4) 0.117 (4) 0.092 (3) 0.010 (3) 0.027 (3) −0.030 (3)
C15 0.082 (2) 0.089 (3) 0.066 (3) 0.002 (2) 0.029 (2) −0.011 (2)
C16 0.082 (3) 0.091 (3) 0.092 (3) 0.014 (2) 0.028 (2) 0.012 (2)

Geometric parameters (Å, º)

S1—C1 1.667 (3) C7—H7A 0.9300
N1—C1 1.342 (4) C9—C10 1.500 (5)
N1—C8 1.382 (4) C9—H9A 0.9700
N1—H1A 0.8600 C9—H9B 0.9700
N2—C1 1.381 (3) C10—C15 1.369 (5)
N2—C2 1.405 (4) C10—C11 1.381 (5)
N2—C9 1.472 (4) C11—C12 1.382 (7)
O1—C2 1.212 (3) C11—H11A 0.9300
C2—C3 1.458 (4) C12—C13 1.357 (9)
C3—C4 1.388 (5) C12—H12A 0.9300
C3—C8 1.396 (4) C13—C14 1.377 (8)
C4—C5 1.381 (5) C13—H13A 0.9300
C4—H4A 0.9300 C14—C15 1.390 (6)
C5—C6 1.406 (5) C14—H14A 0.9300
C5—C16 1.501 (5) C15—H15A 0.9300
C6—C7 1.359 (5) C16—H16B 0.9600
C6—H6A 0.9300 C16—H16A 0.9600
C7—C8 1.385 (4) C16—H16C 0.9600
C1—N1—C8 126.0 (2) N2—C9—C10 114.6 (3)
C1—N1—H1A 117.0 N2—C9—H9A 108.6
C8—N1—H1A 117.0 C10—C9—H9A 108.6
C1—N2—C2 124.2 (3) N2—C9—H9B 108.6
C1—N2—C9 120.1 (3) C10—C9—H9B 108.6
C2—N2—C9 115.7 (2) H9A—C9—H9B 107.6
N1—C1—N2 115.9 (3) C15—C10—C11 118.5 (4)
N1—C1—S1 121.1 (2) C15—C10—C9 123.4 (3)
N2—C1—S1 123.0 (2) C11—C10—C9 118.1 (4)
O1—C2—N2 120.1 (3) C10—C11—C12 120.0 (5)
O1—C2—C3 123.6 (3) C10—C11—H11A 120.0
N2—C2—C3 116.3 (2) C12—C11—H11A 120.0
C4—C3—C8 119.5 (3) C13—C12—C11 121.3 (5)
C4—C3—C2 121.5 (3) C13—C12—H12A 119.3
C8—C3—C2 119.0 (3) C11—C12—H12A 119.3
C5—C4—C3 121.7 (3) C12—C13—C14 119.3 (5)
C5—C4—H4A 119.1 C12—C13—H13A 120.4
C3—C4—H4A 119.1 C14—C13—H13A 120.4
C4—C5—C6 116.7 (3) C13—C14—C15 119.5 (6)
C4—C5—C16 121.8 (3) C13—C14—H14A 120.3
C6—C5—C16 121.5 (3) C15—C14—H14A 120.3
C7—C6—C5 122.9 (3) C10—C15—C14 121.3 (4)
C7—C6—H6A 118.5 C10—C15—H15A 119.3
C5—C6—H6A 118.5 C14—C15—H15A 119.3
C6—C7—C8 119.3 (3) C5—C16—H16B 109.5
C6—C7—H7A 120.3 C5—C16—H16A 109.5
C8—C7—H7A 120.3 H16B—C16—H16A 109.5
N1—C8—C7 122.0 (3) C5—C16—H16C 109.5
N1—C8—C3 118.3 (3) H16B—C16—H16C 109.5
C7—C8—C3 119.7 (3) H16A—C16—H16C 109.5
C8—N1—C1—N2 −0.9 (5) C1—N1—C8—C7 −178.2 (3)
C8—N1—C1—S1 179.7 (3) C1—N1—C8—C3 3.6 (5)
C2—N2—C1—N1 −4.2 (5) C6—C7—C8—N1 179.7 (4)
C9—N2—C1—N1 176.0 (3) C6—C7—C8—C3 −2.1 (6)
C2—N2—C1—S1 175.1 (2) C4—C3—C8—N1 179.5 (3)
C9—N2—C1—S1 −4.6 (4) C2—C3—C8—N1 −1.3 (5)
C1—N2—C2—O1 −173.6 (3) C4—C3—C8—C7 1.3 (5)
C9—N2—C2—O1 6.1 (5) C2—C3—C8—C7 −179.6 (3)
C1—N2—C2—C3 6.2 (5) C1—N2—C9—C10 97.0 (3)
C9—N2—C2—C3 −174.1 (3) C2—N2—C9—C10 −82.7 (3)
O1—C2—C3—C4 −4.2 (5) N2—C9—C10—C15 −13.4 (5)
N2—C2—C3—C4 176.0 (3) N2—C9—C10—C11 167.7 (3)
O1—C2—C3—C8 176.6 (3) C15—C10—C11—C12 0.3 (6)
N2—C2—C3—C8 −3.1 (5) C9—C10—C11—C12 179.3 (4)
C8—C3—C4—C5 0.5 (5) C10—C11—C12—C13 −2.3 (8)
C2—C3—C4—C5 −178.6 (3) C11—C12—C13—C14 3.8 (10)
C3—C4—C5—C6 −1.4 (5) C12—C13—C14—C15 −3.2 (8)
C3—C4—C5—C16 177.6 (3) C11—C10—C15—C14 0.2 (6)
C4—C5—C6—C7 0.5 (6) C9—C10—C15—C14 −178.7 (4)
C16—C5—C6—C7 −178.5 (4) C13—C14—C15—C10 1.3 (7)
C5—C6—C7—C8 1.3 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···S1i 0.86 2.50 3.335 (3) 165
C4—H4A···O1ii 0.93 2.41 3.295 (4) 159

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5070).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Al-Omar, M. A., Abdel Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63–71.
  3. Al-Omary, M. F., Abou-zeid, L. A., Nagi, M. N., Habib, E. E., Abdel-Aziz, A., El-Azab, A. S., Abdel-Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863. [DOI] [PubMed]
  4. Al-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608–8621. [DOI] [PubMed]
  5. Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, 307, 223–227. [DOI] [PubMed]
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  7. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneim. Forsch. Drug Res. 58, 35–41. [DOI] [PubMed]
  9. Harris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213–2243. [DOI] [PubMed]
  10. Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratisl.), 59, 741–752.
  11. Klepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40–73. [DOI] [PubMed]
  12. Rádl, S., Hezky, P., Proška, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim Ger.), 333, 381–386. [DOI] [PubMed]
  13. Roth, H. J. & Fenner, H. (2000). Arzneistoffe, 3rd ed., pp. 51–114. Stuttgart: Deutscher Apotheker Verlag.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006009/is5070sup1.cif

e-68-0o717-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006009/is5070Isup2.hkl

e-68-0o717-Isup2.hkl (124.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006009/is5070Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES