Abstract
In the title compound, C16H14N2OS, the quinazoline ring system is essentially planar, with a maximum deviation of 0.029 (3) Å. The dihedral angle between the quinazoline and benzene rings is 88.4 (2)°. In the crystal, adjacent molecules are connected via pairs of N—H⋯S and C—H⋯O hydrogen bonds, which generate R 2 2(8) and R 2 2(10) graph-set motifs, respectively, resulting in a supramolecular chain along the a axis.
Related literature
For details and applications of quinazoline compounds, see: Roth & Fenner (2000 ▶); Jantova et al. (2004 ▶); Harris & Thorarensen (2004 ▶); Andries et al. (2005 ▶); Al-Rashood et al. (2006 ▶); Ghorab et al. (2007 ▶); Rádl et al. (2000 ▶); Klepser & Klepser (1997 ▶); Al-Omar et al. (2004 ▶); Al-Omary et al. (2010 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C16H14N2OS
M r = 282.35
Monoclinic,
a = 24.2438 (18) Å
b = 5.1618 (5) Å
c = 24.4265 (17) Å
β = 111.532 (6)°
V = 2843.4 (4) Å3
Z = 8
Cu Kα radiation
μ = 1.99 mm−1
T = 296 K
0.83 × 0.12 × 0.06 mm
Data collection
Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.289, T max = 0.890
9528 measured reflections
2592 independent reflections
1421 reflections with I > 2σ(I)
R int = 0.104
Refinement
R[F 2 > 2σ(F 2)] = 0.055
wR(F 2) = 0.166
S = 0.93
2592 reflections
182 parameters
H-atom parameters constrained
Δρmax = 0.24 e Å−3
Δρmin = −0.21 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006009/is5070sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006009/is5070Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812006009/is5070Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯S1i | 0.86 | 2.50 | 3.335 (3) | 165 |
| C4—H4A⋯O1ii | 0.93 | 2.41 | 3.295 (4) | 159 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
RAS, MAO and HES express their gratitude to Mr Hazem Ghabbour, X-ray Division of the Pharmaceutical Chemistry Department, King Saud University, for valuable help in the determination of the X-ray crystal structure. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.
supplementary crystallographic information
Comment
Quinazoline moiety is present in many classes of biologically-active compounds. A number of them have been clinically used as antifungal, antibacterial and antiprotozoic drugs (Roth & Fenner, 2000; Jantova et al., 2004; Harris & Thorarensen, 2004), as well as antituberculotic agents (Andries et al., 2005). Furthermore, they have drawn much attention due to their broad range of pharmacological properties which include antitumor (Al-Rashood et al., 2006), anticancer (Ghorab et al., 2007) and analgesic (Rádl et al., 2000) properties. Certain quinazoline analogs also showed remarkable activity against the opportunistic infections of Pneumocystis carinii and Toxoplasma gondii. Those microorganisms proved to be the priniciple cause of death in patients with immunocompromised diseases such as acquired immune deficiency syndrome (Klepser & Klepser, 1997). This work is a continuation of this program with the aim of obtaining an interesting series of quinazolines that contain the thioxo functional group which was identified as a possible pharmacophore of the antimicrobial activity (Al-Omar et al., 2004; Al-Omary et al., 2010).
The molecular structure of the title compound is shown in Fig. 1. The quinazoline (N1,N2/C1–C8) ring is essentially planar, with a maximum deviation of 0.029 (3) Å for atom C2. The dihedral angle between the quinazoline (N1,N2/C1–C8) and the benzene (C10–C15) rings is 88.4 (2)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal, (Fig. 2), the adjacent molecules are connected via a pair of N—H···S and C—H···O (Table 1) hydrogen bonds, generating R22(8) and R22(10) graph-set motifs (Bernstein et al., 1995), respectively, resulting in a supramolecular [100] chain.
Experimental
A mixture of benzyl isothiocyanate (10 mmol) and 2-amino-5-methyl benzoic acid (10 mmol) in ethanol (30 ml) was heated under reflux in the presence of triethylamine (5 mmol) for 2 h. After cooling, the mixture was poured into ice/water. The resulting solid was filtered, washed with water and dried. Recrystallization from ethanol gave 3-benzyl-2,3-dihydro-6-methyl-2-thioxo-quinazoline-4(1H)-one as colorless crystals.
Refinement
All H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.
Figures
Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing view of the title compound along the b axis.
Crystal data
| C16H14N2OS | F(000) = 1184 |
| Mr = 282.35 | Dx = 1.319 Mg m−3 |
| Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
| Hall symbol: -C 2yc | Cell parameters from 339 reflections |
| a = 24.2438 (18) Å | θ = 3.9–53.5° |
| b = 5.1618 (5) Å | µ = 1.99 mm−1 |
| c = 24.4265 (17) Å | T = 296 K |
| β = 111.532 (6)° | Needle, colourless |
| V = 2843.4 (4) Å3 | 0.83 × 0.12 × 0.06 mm |
| Z = 8 |
Data collection
| Bruker SMART APEXII CCD diffractometer | 2592 independent reflections |
| Radiation source: fine-focus sealed tube | 1421 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.104 |
| φ and ω scans | θmax = 69.8°, θmin = 3.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −29→29 |
| Tmin = 0.289, Tmax = 0.890 | k = −6→5 |
| 9528 measured reflections | l = −28→28 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.166 | H-atom parameters constrained |
| S = 0.93 | w = 1/[σ2(Fo2) + (0.0875P)2] where P = (Fo2 + 2Fc2)/3 |
| 2592 reflections | (Δ/σ)max = 0.001 |
| 182 parameters | Δρmax = 0.24 e Å−3 |
| 0 restraints | Δρmin = −0.21 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.22029 (4) | 0.1447 (2) | 0.07055 (4) | 0.0718 (3) | |
| N1 | 0.17921 (10) | 0.4985 (6) | −0.01167 (11) | 0.0630 (7) | |
| H1A | 0.2097 | 0.4590 | −0.0199 | 0.076* | |
| N2 | 0.12318 (10) | 0.4401 (5) | 0.04598 (11) | 0.0574 (7) | |
| O1 | 0.04534 (10) | 0.7057 (5) | 0.03541 (11) | 0.0747 (7) | |
| C1 | 0.17206 (13) | 0.3706 (7) | 0.03308 (14) | 0.0594 (8) | |
| C2 | 0.08423 (13) | 0.6424 (7) | 0.01808 (14) | 0.0600 (8) | |
| C3 | 0.09395 (12) | 0.7664 (7) | −0.03127 (13) | 0.0585 (8) | |
| C4 | 0.05611 (13) | 0.9575 (7) | −0.06444 (14) | 0.0630 (9) | |
| H4A | 0.0243 | 1.0100 | −0.0544 | 0.076* | |
| C5 | 0.06438 (15) | 1.0717 (7) | −0.11196 (15) | 0.0691 (9) | |
| C6 | 0.11382 (16) | 0.9891 (8) | −0.12434 (16) | 0.0763 (10) | |
| H6A | 0.1206 | 1.0638 | −0.1559 | 0.092* | |
| C7 | 0.15210 (15) | 0.8048 (7) | −0.09221 (15) | 0.0715 (10) | |
| H7A | 0.1848 | 0.7578 | −0.1013 | 0.086* | |
| C8 | 0.14201 (13) | 0.6879 (7) | −0.04573 (14) | 0.0578 (8) | |
| C9 | 0.10920 (14) | 0.2997 (7) | 0.09172 (15) | 0.0657 (9) | |
| H9A | 0.1263 | 0.1276 | 0.0958 | 0.079* | |
| H9B | 0.0665 | 0.2799 | 0.0788 | 0.079* | |
| C10 | 0.13111 (14) | 0.4281 (7) | 0.15093 (14) | 0.0641 (9) | |
| C11 | 0.1103 (2) | 0.3376 (10) | 0.1930 (2) | 0.0988 (15) | |
| H11A | 0.0831 | 0.2022 | 0.1840 | 0.119* | |
| C12 | 0.1298 (3) | 0.4483 (15) | 0.2483 (2) | 0.131 (2) | |
| H12A | 0.1144 | 0.3902 | 0.2758 | 0.157* | |
| C13 | 0.1710 (3) | 0.6401 (16) | 0.2634 (2) | 0.133 (2) | |
| H13A | 0.1854 | 0.7057 | 0.3015 | 0.160* | |
| C14 | 0.1912 (2) | 0.7364 (11) | 0.2216 (2) | 0.1082 (15) | |
| H14A | 0.2179 | 0.8737 | 0.2306 | 0.130* | |
| C15 | 0.17129 (17) | 0.6268 (8) | 0.16567 (16) | 0.0783 (11) | |
| H15A | 0.1856 | 0.6898 | 0.1377 | 0.094* | |
| C16 | 0.02217 (18) | 1.2711 (9) | −0.14931 (18) | 0.0893 (12) | |
| H16B | −0.0064 | 1.3143 | −0.1321 | 0.134* | |
| H16A | 0.0021 | 1.2027 | −0.1881 | 0.134* | |
| H16C | 0.0438 | 1.4238 | −0.1516 | 0.134* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0640 (5) | 0.0875 (7) | 0.0707 (6) | 0.0172 (4) | 0.0327 (5) | 0.0084 (5) |
| N1 | 0.0558 (14) | 0.083 (2) | 0.0576 (17) | 0.0153 (13) | 0.0295 (14) | 0.0029 (15) |
| N2 | 0.0510 (13) | 0.0688 (18) | 0.0577 (16) | 0.0036 (11) | 0.0264 (13) | −0.0049 (13) |
| O1 | 0.0601 (12) | 0.0924 (19) | 0.0855 (17) | 0.0135 (11) | 0.0430 (13) | −0.0007 (13) |
| C1 | 0.0500 (16) | 0.076 (2) | 0.0554 (19) | 0.0024 (14) | 0.0231 (16) | −0.0121 (17) |
| C2 | 0.0498 (16) | 0.073 (2) | 0.059 (2) | 0.0022 (14) | 0.0228 (16) | −0.0124 (17) |
| C3 | 0.0472 (16) | 0.076 (2) | 0.051 (2) | −0.0010 (14) | 0.0169 (16) | −0.0104 (17) |
| C4 | 0.0543 (17) | 0.070 (2) | 0.066 (2) | 0.0069 (15) | 0.0225 (17) | −0.0068 (18) |
| C5 | 0.065 (2) | 0.074 (2) | 0.066 (2) | 0.0057 (16) | 0.0211 (18) | −0.0006 (19) |
| C6 | 0.077 (2) | 0.086 (3) | 0.072 (2) | 0.0089 (18) | 0.035 (2) | 0.008 (2) |
| C7 | 0.068 (2) | 0.090 (3) | 0.068 (2) | 0.0134 (17) | 0.0375 (19) | 0.009 (2) |
| C8 | 0.0472 (16) | 0.073 (2) | 0.0540 (19) | 0.0062 (13) | 0.0194 (15) | −0.0060 (16) |
| C9 | 0.0629 (19) | 0.065 (2) | 0.080 (2) | −0.0013 (14) | 0.0393 (19) | −0.0001 (18) |
| C10 | 0.0643 (18) | 0.074 (2) | 0.063 (2) | 0.0196 (16) | 0.0343 (18) | 0.0090 (18) |
| C11 | 0.115 (3) | 0.114 (4) | 0.090 (3) | 0.020 (3) | 0.065 (3) | 0.028 (3) |
| C12 | 0.150 (6) | 0.185 (7) | 0.080 (4) | 0.064 (5) | 0.069 (4) | 0.043 (4) |
| C13 | 0.131 (5) | 0.196 (7) | 0.068 (3) | 0.061 (4) | 0.031 (4) | −0.018 (4) |
| C14 | 0.108 (4) | 0.117 (4) | 0.092 (3) | 0.010 (3) | 0.027 (3) | −0.030 (3) |
| C15 | 0.082 (2) | 0.089 (3) | 0.066 (3) | 0.002 (2) | 0.029 (2) | −0.011 (2) |
| C16 | 0.082 (3) | 0.091 (3) | 0.092 (3) | 0.014 (2) | 0.028 (2) | 0.012 (2) |
Geometric parameters (Å, º)
| S1—C1 | 1.667 (3) | C7—H7A | 0.9300 |
| N1—C1 | 1.342 (4) | C9—C10 | 1.500 (5) |
| N1—C8 | 1.382 (4) | C9—H9A | 0.9700 |
| N1—H1A | 0.8600 | C9—H9B | 0.9700 |
| N2—C1 | 1.381 (3) | C10—C15 | 1.369 (5) |
| N2—C2 | 1.405 (4) | C10—C11 | 1.381 (5) |
| N2—C9 | 1.472 (4) | C11—C12 | 1.382 (7) |
| O1—C2 | 1.212 (3) | C11—H11A | 0.9300 |
| C2—C3 | 1.458 (4) | C12—C13 | 1.357 (9) |
| C3—C4 | 1.388 (5) | C12—H12A | 0.9300 |
| C3—C8 | 1.396 (4) | C13—C14 | 1.377 (8) |
| C4—C5 | 1.381 (5) | C13—H13A | 0.9300 |
| C4—H4A | 0.9300 | C14—C15 | 1.390 (6) |
| C5—C6 | 1.406 (5) | C14—H14A | 0.9300 |
| C5—C16 | 1.501 (5) | C15—H15A | 0.9300 |
| C6—C7 | 1.359 (5) | C16—H16B | 0.9600 |
| C6—H6A | 0.9300 | C16—H16A | 0.9600 |
| C7—C8 | 1.385 (4) | C16—H16C | 0.9600 |
| C1—N1—C8 | 126.0 (2) | N2—C9—C10 | 114.6 (3) |
| C1—N1—H1A | 117.0 | N2—C9—H9A | 108.6 |
| C8—N1—H1A | 117.0 | C10—C9—H9A | 108.6 |
| C1—N2—C2 | 124.2 (3) | N2—C9—H9B | 108.6 |
| C1—N2—C9 | 120.1 (3) | C10—C9—H9B | 108.6 |
| C2—N2—C9 | 115.7 (2) | H9A—C9—H9B | 107.6 |
| N1—C1—N2 | 115.9 (3) | C15—C10—C11 | 118.5 (4) |
| N1—C1—S1 | 121.1 (2) | C15—C10—C9 | 123.4 (3) |
| N2—C1—S1 | 123.0 (2) | C11—C10—C9 | 118.1 (4) |
| O1—C2—N2 | 120.1 (3) | C10—C11—C12 | 120.0 (5) |
| O1—C2—C3 | 123.6 (3) | C10—C11—H11A | 120.0 |
| N2—C2—C3 | 116.3 (2) | C12—C11—H11A | 120.0 |
| C4—C3—C8 | 119.5 (3) | C13—C12—C11 | 121.3 (5) |
| C4—C3—C2 | 121.5 (3) | C13—C12—H12A | 119.3 |
| C8—C3—C2 | 119.0 (3) | C11—C12—H12A | 119.3 |
| C5—C4—C3 | 121.7 (3) | C12—C13—C14 | 119.3 (5) |
| C5—C4—H4A | 119.1 | C12—C13—H13A | 120.4 |
| C3—C4—H4A | 119.1 | C14—C13—H13A | 120.4 |
| C4—C5—C6 | 116.7 (3) | C13—C14—C15 | 119.5 (6) |
| C4—C5—C16 | 121.8 (3) | C13—C14—H14A | 120.3 |
| C6—C5—C16 | 121.5 (3) | C15—C14—H14A | 120.3 |
| C7—C6—C5 | 122.9 (3) | C10—C15—C14 | 121.3 (4) |
| C7—C6—H6A | 118.5 | C10—C15—H15A | 119.3 |
| C5—C6—H6A | 118.5 | C14—C15—H15A | 119.3 |
| C6—C7—C8 | 119.3 (3) | C5—C16—H16B | 109.5 |
| C6—C7—H7A | 120.3 | C5—C16—H16A | 109.5 |
| C8—C7—H7A | 120.3 | H16B—C16—H16A | 109.5 |
| N1—C8—C7 | 122.0 (3) | C5—C16—H16C | 109.5 |
| N1—C8—C3 | 118.3 (3) | H16B—C16—H16C | 109.5 |
| C7—C8—C3 | 119.7 (3) | H16A—C16—H16C | 109.5 |
| C8—N1—C1—N2 | −0.9 (5) | C1—N1—C8—C7 | −178.2 (3) |
| C8—N1—C1—S1 | 179.7 (3) | C1—N1—C8—C3 | 3.6 (5) |
| C2—N2—C1—N1 | −4.2 (5) | C6—C7—C8—N1 | 179.7 (4) |
| C9—N2—C1—N1 | 176.0 (3) | C6—C7—C8—C3 | −2.1 (6) |
| C2—N2—C1—S1 | 175.1 (2) | C4—C3—C8—N1 | 179.5 (3) |
| C9—N2—C1—S1 | −4.6 (4) | C2—C3—C8—N1 | −1.3 (5) |
| C1—N2—C2—O1 | −173.6 (3) | C4—C3—C8—C7 | 1.3 (5) |
| C9—N2—C2—O1 | 6.1 (5) | C2—C3—C8—C7 | −179.6 (3) |
| C1—N2—C2—C3 | 6.2 (5) | C1—N2—C9—C10 | 97.0 (3) |
| C9—N2—C2—C3 | −174.1 (3) | C2—N2—C9—C10 | −82.7 (3) |
| O1—C2—C3—C4 | −4.2 (5) | N2—C9—C10—C15 | −13.4 (5) |
| N2—C2—C3—C4 | 176.0 (3) | N2—C9—C10—C11 | 167.7 (3) |
| O1—C2—C3—C8 | 176.6 (3) | C15—C10—C11—C12 | 0.3 (6) |
| N2—C2—C3—C8 | −3.1 (5) | C9—C10—C11—C12 | 179.3 (4) |
| C8—C3—C4—C5 | 0.5 (5) | C10—C11—C12—C13 | −2.3 (8) |
| C2—C3—C4—C5 | −178.6 (3) | C11—C12—C13—C14 | 3.8 (10) |
| C3—C4—C5—C6 | −1.4 (5) | C12—C13—C14—C15 | −3.2 (8) |
| C3—C4—C5—C16 | 177.6 (3) | C11—C10—C15—C14 | 0.2 (6) |
| C4—C5—C6—C7 | 0.5 (6) | C9—C10—C15—C14 | −178.7 (4) |
| C16—C5—C6—C7 | −178.5 (4) | C13—C14—C15—C10 | 1.3 (7) |
| C5—C6—C7—C8 | 1.3 (6) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···S1i | 0.86 | 2.50 | 3.335 (3) | 165 |
| C4—H4A···O1ii | 0.93 | 2.41 | 3.295 (4) | 159 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x, −y+2, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5070).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Al-Omar, M. A., Abdel Hamide, S. G., Al-Khamees, H. A. & El-Subbagh, H. I. (2004). Saudi Pharm. J. 12, 63–71.
- Al-Omary, M. F., Abou-zeid, L. A., Nagi, M. N., Habib, E. E., Abdel-Aziz, A., El-Azab, A. S., Abdel-Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863. [DOI] [PubMed]
- Al-Rashood, S. T., Aboldahab, I. A., Nagi, M. N., Abouzeid, L. A., Abdel-Aziz, A. A. M., Abdel-hamide, S. G., Youssef, K. M., Al-Obaid, A. M. & El-Subbagh, H. I. (2006). Bioorg. Med. Chem. 14, 8608–8621. [DOI] [PubMed]
- Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. A. (2005). Science, 307, 223–227. [DOI] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneim. Forsch. Drug Res. 58, 35–41. [DOI] [PubMed]
- Harris, C. R. & Thorarensen, A. (2004). Curr. Med. Chem. 11, 2213–2243. [DOI] [PubMed]
- Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratisl.), 59, 741–752.
- Klepser, M. E. & Klepser, T. B. (1997). Drugs, 53, 40–73. [DOI] [PubMed]
- Rádl, S., Hezky, P., Proška, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim Ger.), 333, 381–386. [DOI] [PubMed]
- Roth, H. J. & Fenner, H. (2000). Arzneistoffe, 3rd ed., pp. 51–114. Stuttgart: Deutscher Apotheker Verlag.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006009/is5070sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006009/is5070Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812006009/is5070Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


