Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jul;78(1):191–195. doi: 10.1172/JCI112551

Myocardial function and hemoglobin oxygen affinity during hyperglycemia in the fetal lamb.

H Bard, J C Fouron, X De Muylder, G Ducharme, J S Lafond
PMCID: PMC329549  PMID: 3722375

Abstract

To determine the effects of maternal hyperglycemia on fetal hemodynamic and cardiac function, a study was carried out on nine chronically catheterized fetal sheep. In six fetuses, glucose was infused intravenously with an initial dose of 5 mg/kg per min. Data were compared with controls. This dose was gradually increased to 16 mg/kg per min by the fifth day. The initial blood glucose was 14.7 +/- 3.0 mg/dl and increased to 54.6 +/- 16.4 mg/dl by the last day of the infusion period (P less than 0.001). The PO2 decreased from a baseline of 20.25 +/- 3.40 to 15.88 +/- 5.24 mmHg (P less than 0.01). Similarly significant decreases were also observed for the blood O2 content and O2 hemoglobin saturation: 8.5 +/- 1.7 to 6.4 +/- 2.2 ml/dl and 62.3 +/- 13.6 to 46.1 +/- 17.6%, respectively, during hyperglycemia (P less than 0.01). The duration of the preejection period (PEP) before the start of the experiment was 45 +/- 4 ms; a final value of 57 +/- 10 ms was obtained (P less than 0.01). However, the electromechanical delay and ejection time (ET) showed no significant variation. The ratio of the PEP/ET increased from 0.31 +/- 0.04 to 0.38 +/- 0.07 (P less than 0.01) during hyperglycemia. The reticulocytes increased from 1.4 +/- 1.8 to 3.1 +/- 2.9% (P less than 0.05) and the 2,3-diphosphoglycerate decreased from 4.4 +/- 1.1 to 2.8 +/- 1.2 mumol/g hemoglobin (P less than 0.005). This study demonstrated that fetal hyperglycemia depresses myocardial function in the fetal lamb. The changes in cardiac function could not be explained by the small drop in O2 saturation.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bard H., Fouron J. C., Robillard J. E., Cornet A., Soukini M. A. Red cell oxygen affinity in fetal sheep: role of 2,3-DPG and adult hemoglobin. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jul;45(1):7–10. doi: 10.1152/jappl.1978.45.1.7. [DOI] [PubMed] [Google Scholar]
  2. Breitweser J. A., Meyer R. A., Sperling M. A., Tsang R. C., Kaplan S. Cardiac septal hypertrophy in hyperinsulinemic infants. J Pediatr. 1980 Mar;96(3 Pt 2):535–539. doi: 10.1016/s0022-3476(80)80862-6. [DOI] [PubMed] [Google Scholar]
  3. Brunette M. G., Allard S. Phosphate uptake by syncytial brush border membranes of human placenta. Pediatr Res. 1985 Nov;19(11):1179–1182. doi: 10.1203/00006450-198511000-00013. [DOI] [PubMed] [Google Scholar]
  4. Cellina G., Lo Cicero G., Brina A., Zanchetti A. Reversible alteration of myocardial function in gestational diabetes. Eur Heart J. 1983 Jan;4(1):59–63. doi: 10.1093/oxfordjournals.eurheartj.a061372. [DOI] [PubMed] [Google Scholar]
  5. Ditzel J. Oxygen transport impairment in diabetes. Diabetes. 1976;25(2 Suppl):832–838. [PubMed] [Google Scholar]
  6. Downing S. E., Lee J. C., Werner J. C. Effects of insulin on ventricular function in diabetic lambs with acidosis. Am J Physiol. 1981 Sep;241(3):H401–H407. doi: 10.1152/ajpheart.1981.241.3.H401. [DOI] [PubMed] [Google Scholar]
  7. Fouron J. C., Korcaz Y., Leduc B. Cardiovascular changes associated with fetal breathing. Am J Obstet Gynecol. 1975 Dec 15;123(8):868–876. doi: 10.1016/0002-9378(75)90864-9. [DOI] [PubMed] [Google Scholar]
  8. Gabbe S. G. Application of scientific rationale to the management of the pregnant diabetic. Semin Perinatol. 1978 Oct;2(4):361–371. [PubMed] [Google Scholar]
  9. Mace S., Hirschfield S. S., Riggs T., Fanaroff A. A., Merkatz I. R. Echocardiographic abnormalities in infants of diabetic mothers. J Pediatr. 1979 Dec;95(6):1013–1019. doi: 10.1016/s0022-3476(79)80301-7. [DOI] [PubMed] [Google Scholar]
  10. Meschia G., Battaglia F. C., Bruns P. D. Theoretical and experimental study of transplacental diffusion. J Appl Physiol. 1967 Jun;22(6):1171–1178. doi: 10.1152/jappl.1967.22.6.1171. [DOI] [PubMed] [Google Scholar]
  11. Murata Y. Advances on the horizon. Clin Perinatol. 1982 Jun;9(2):433–441. [PubMed] [Google Scholar]
  12. Nudel D. B., Lee J. C., Downing S. E. Reciprocal inhibition of cardiac responses to norepinephrine and insulin. Am J Physiol. 1977 Dec;233(6):H665–H669. doi: 10.1152/ajpheart.1977.233.6.H665. [DOI] [PubMed] [Google Scholar]
  13. Oto A., Oram A., Karamehmetoglu A., Telatar F., Akalin S. Non-invasive assessment of left ventricular function in diabetics without clinical heart disease. Acta Diabetol Lat. 1982 Jan-Mar;19(1):49–53. doi: 10.1007/BF02581185. [DOI] [PubMed] [Google Scholar]
  14. Philipps A. F., Carson B. S., Meschia G., Battaglia F. C. Insulin secretion in fetal and newborn sheep. Am J Physiol. 1978 Nov;235(5):E467–E474. doi: 10.1152/ajpendo.1978.235.5.E467. [DOI] [PubMed] [Google Scholar]
  15. Philipps A. F., Porte P. J., Stabinsky S., Rosenkrantz T. S., Raye J. R. Effects of chronic fetal hyperglycemia upon oxygen consumption in the ovine uterus and conceptus. J Clin Invest. 1984 Jul;74(1):279–286. doi: 10.1172/JCI111412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Philips A. F., Dubin J. W., Matty P. J., Raye J. R. Arterial hypoxemia and hyperinsulinemia in the chronically hyperglycemic fetal lamb. Pediatr Res. 1982 Aug;16(8):653–658. doi: 10.1203/00006450-198208000-00013. [DOI] [PubMed] [Google Scholar]
  17. Robillard J. E., Sessions C., Kennedy R. L., Smith F. G., Jr Metabolic effects of constant hypertonic glucose infusion in well-oxygenated fetuses. Am J Obstet Gynecol. 1978 Jan 15;130(2):199–203. doi: 10.1016/0002-9378(78)90366-6. [DOI] [PubMed] [Google Scholar]
  18. Smith F. G., Jr, Alexander D. P., Buckle R. M., Britton H. G., Nixon D. A. Parathyroid hormone in foetal and adult sheep: the effect of hypocalcaemia. J Endocrinol. 1972 Jun;53(3):339–348. doi: 10.1677/joe.0.0530339. [DOI] [PubMed] [Google Scholar]
  19. Travis S. F., Morrison A. D., Clements R. S., Jr, Winegrad A. I., Oski F. A. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway. J Clin Invest. 1971 Oct;50(10):2104–2112. doi: 10.1172/JCI106704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Travis S. F., Sugerman H. J., Ruberg R. L., Dudrick S. J., Delivoria-Papadopoulos M., Miller L. D., Oski F. A. Alterations of red-cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. N Engl J Med. 1971 Sep 30;285(14):763–768. doi: 10.1056/NEJM197109302851402. [DOI] [PubMed] [Google Scholar]
  21. Uusitupa M., Siitonen O., Aro A., Korhonen T., Pyörälä K. Effect of correction of hyperglycemia on left ventricular function in non-insulin-dependent (type 2) diabetics. Acta Med Scand. 1983;213(5):363–368. doi: 10.1111/j.0954-6820.1983.tb03752.x. [DOI] [PubMed] [Google Scholar]
  22. Weissler A. M. Current concepts in cardiology. Systolic-time intervals. N Engl J Med. 1977 Feb 10;296(6):321–324. doi: 10.1056/NEJM197702102960607. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES