Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o723. doi: 10.1107/S1600536812005739

2-Chloro-N-(3-methyl­phen­yl)benzamide

Vinola Z Rodrigues a, B Thimme Gowda a,*, Viktor Vrábel b, Jozef Kožíšek b
PMCID: PMC3295494  PMID: 22412605

Abstract

In the structure of the title compound, C14H12ClNO, the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the aniline ring is positioned anti to the N—H bond. The amide group forms dihedral angles of 60.1 (1) and 22.0 (1)°, respectively, with the benzoyl and aniline rings, while the angle between these rings is 38.7 (1)°. The crystal structure is stabilized by N—H⋯O hydrogen bonds, which give rise to infinite chains running along the c axis.

Related literature  

For studies, including ours, on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003); Gowda et al. (1999, 2006); Rodrigues et al. (2011); Saeed et al. (2010); for N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007); for N-chloro­aryl­amides, see: Jyothi & Gowda (2004); and for N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006).graphic file with name e-68-0o723-scheme1.jpg

Experimental  

Crystal data  

  • C14H12ClNO

  • M r = 245.70

  • Tetragonal, Inline graphic

  • a = 8.8751 (3) Å

  • c = 15.9642 (5) Å

  • V = 1257.45 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.4 × 0.3 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.898, T max = 0.942

  • 8244 measured reflections

  • 2552 independent reflections

  • 1757 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.069

  • S = 1.04

  • 2552 reflections

  • 158 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983), 1229 Friedel pairs

  • Flack parameter: 0.00 (6)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005739/sj5196sup1.cif

e-68-0o723-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005739/sj5196Isup2.hkl

e-68-0o723-Isup2.hkl (125.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005739/sj5196Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.03 (1) 2.8790 (16) 171 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. VV and JK thank the Grant Agencies for their financial support (VEGA Grant Agency of the Slovak Ministry of Education, grant No. 1/0679/11), the Research and Development Agency of Slovakia (grant No. APVV-0202–10) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 1999, 2006; Rodrigues et al., 2011; Saeed et al., 2010), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of 2-chloro-N-(3-methylphenyl)benzamide (I) has been determined (Fig.1).

In (I), the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond, while the meta-methyl group in the anilino ring is positioned anti to the N—H bond, similar to that observed in 3-chloro-N-(3-methylphenyl)benzamide (I) (Rodrigues et al., 2011).

The amide group forms dihedral angles of 60.1 (1) and 22.0 (1)°, respectively, with the benzoyl and aniline rings, while the angle between the benzoyl and aniline rings is 38.7 (1)°, compared to the value of 77.4 (1)° in (II).

In the crystal structure, intermolecular N1—H1···O1 hydrogen bonds (Table 1) link the molecules into infinite chains running along the c-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by a method similar to the one described by Gowda et al. (2006). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Plate like colorless single crystals of the title compound used in the X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All hydrogen atoms bound to carbon were placed in calculated positions with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was located in a difference map and refined with the N—H distance restrained to 0.86 (1) Å. Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Packing view of the title compound. Molecular chains along along the c axis are generated by N—H···O hydrogen bonds which are shown as dashed lines. H atoms have been omitted.

Crystal data

C14H12ClNO Dx = 1.298 Mg m3
Mr = 245.70 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43 Cell parameters from 2552 reflections
a = 8.8751 (3) Å θ = 3.4–29.3°
c = 15.9642 (5) Å µ = 0.29 mm1
V = 1257.45 (6) Å3 T = 295 K
Z = 4 Plate, colourless
F(000) = 512 0.4 × 0.3 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur System diffractometer 2552 independent reflections
Radiation source: fine-focus sealed tube 1757 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
Detector resolution: 0 pixels mm-1 θmax = 26.4°, θmin = 4.1°
ω scans with κ offsets h = −10→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −11→10
Tmin = 0.898, Tmax = 0.942 l = −19→19
8244 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0348P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2552 reflections Δρmax = 0.08 e Å3
158 parameters Δρmin = −0.11 e Å3
2 restraints Absolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6060 (2) 0.6255 (2) 0.21616 (9) 0.0579 (4)
C2 0.6965 (2) 0.7340 (2) 0.25296 (11) 0.0731 (5)
C3 0.6388 (4) 0.8363 (2) 0.30991 (13) 0.1015 (8)
H3 0.7002 0.9103 0.3330 0.122*
C4 0.4900 (5) 0.8268 (3) 0.33167 (17) 0.1176 (10)
H4 0.4505 0.8952 0.3700 0.141*
C5 0.3986 (3) 0.7188 (4) 0.29813 (18) 0.1124 (9)
H5 0.2979 0.7131 0.3140 0.135*
C6 0.4562 (3) 0.6180 (2) 0.24059 (14) 0.0819 (6)
H6 0.3939 0.5442 0.2180 0.098*
C7 0.66413 (19) 0.52431 (19) 0.14825 (9) 0.0525 (4)
C8 0.69202 (18) 0.25396 (19) 0.11204 (9) 0.0529 (4)
C9 0.7955 (2) 0.2664 (2) 0.04811 (10) 0.0582 (4)
H9 0.8393 0.3594 0.0368 0.070*
C10 0.8357 (2) 0.1411 (2) −0.00002 (10) 0.0678 (5)
C11 0.7689 (3) 0.0059 (3) 0.01807 (13) 0.0839 (6)
H11 0.7941 −0.0786 −0.0134 0.101*
C12 0.6663 (3) −0.0075 (2) 0.08115 (15) 0.0927 (7)
H12 0.6228 −0.1007 0.0923 0.111*
C13 0.6264 (2) 0.1167 (2) 0.12884 (12) 0.0732 (5)
H13 0.5560 0.1075 0.1717 0.088*
C14 0.9504 (3) 0.1563 (3) −0.06817 (13) 0.0986 (7)
H14A 0.9645 0.0605 −0.0950 0.148*
H14B 1.0442 0.1896 −0.0447 0.148*
H14C 0.9160 0.2285 −0.1086 0.148*
N1 0.65297 (16) 0.37678 (15) 0.16483 (7) 0.0541 (3)
H1 0.6216 (16) 0.3554 (18) 0.2143 (4) 0.057 (5)*
O1 0.71348 (15) 0.57708 (12) 0.08283 (6) 0.0695 (3)
Cl1 0.88575 (8) 0.74156 (9) 0.22927 (4) 0.1238 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0768 (13) 0.0532 (10) 0.0435 (9) 0.0070 (9) 0.0009 (8) 0.0051 (8)
C2 0.1011 (15) 0.0678 (12) 0.0505 (10) −0.0026 (11) 0.0069 (10) −0.0031 (9)
C3 0.167 (3) 0.0738 (15) 0.0636 (13) −0.0023 (15) 0.0112 (15) −0.0163 (12)
C4 0.184 (3) 0.0806 (18) 0.0882 (17) 0.052 (2) 0.024 (2) −0.0110 (15)
C5 0.106 (2) 0.122 (2) 0.1091 (19) 0.0456 (19) 0.0298 (16) −0.0028 (18)
C6 0.0827 (15) 0.0798 (14) 0.0831 (13) 0.0154 (11) 0.0071 (12) −0.0038 (12)
C7 0.0604 (10) 0.0576 (11) 0.0397 (8) 0.0039 (8) −0.0057 (7) 0.0000 (8)
C8 0.0618 (11) 0.0561 (11) 0.0407 (8) 0.0074 (9) −0.0086 (8) 0.0017 (7)
C9 0.0647 (11) 0.0597 (11) 0.0503 (9) 0.0074 (8) −0.0004 (8) −0.0018 (8)
C10 0.0762 (13) 0.0770 (14) 0.0504 (10) 0.0228 (11) −0.0066 (9) −0.0098 (9)
C11 0.1158 (18) 0.0646 (14) 0.0714 (13) 0.0147 (12) −0.0142 (13) −0.0211 (10)
C12 0.134 (2) 0.0550 (13) 0.0897 (15) −0.0091 (12) −0.0063 (15) −0.0062 (12)
C13 0.0945 (15) 0.0604 (13) 0.0647 (11) −0.0058 (10) 0.0061 (10) 0.0001 (10)
C14 0.1021 (18) 0.118 (2) 0.0757 (13) 0.0372 (14) 0.0136 (12) −0.0137 (13)
N1 0.0747 (10) 0.0516 (9) 0.0361 (7) 0.0009 (7) 0.0059 (6) 0.0023 (6)
O1 0.1070 (10) 0.0619 (8) 0.0397 (6) −0.0015 (6) 0.0060 (6) 0.0053 (6)
Cl1 0.1097 (5) 0.1673 (7) 0.0943 (4) −0.0532 (4) 0.0089 (3) −0.0407 (4)

Geometric parameters (Å, º)

C1—C2 1.384 (3) C8—C9 1.378 (2)
C1—C6 1.387 (3) C8—N1 1.421 (2)
C1—C7 1.499 (2) C9—C10 1.398 (2)
C2—C3 1.383 (3) C9—H9 0.9300
C2—Cl1 1.723 (2) C10—C11 1.369 (3)
C3—C4 1.368 (4) C10—C14 1.496 (3)
C3—H3 0.9300 C11—C12 1.363 (3)
C4—C5 1.366 (4) C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.386 (3)
C5—C6 1.381 (3) C12—H12 0.9300
C5—H5 0.9300 C13—H13 0.9300
C6—H6 0.9300 C14—H14A 0.9600
C7—O1 1.2254 (19) C14—H14B 0.9600
C7—N1 1.340 (2) C14—H14C 0.9600
C8—C13 1.376 (2) N1—H1 0.859 (2)
C2—C1—C6 118.06 (17) C8—C9—C10 120.92 (17)
C2—C1—C7 121.60 (16) C8—C9—H9 119.5
C6—C1—C7 120.25 (17) C10—C9—H9 119.5
C3—C2—C1 121.4 (2) C11—C10—C9 118.07 (18)
C3—C2—Cl1 118.66 (19) C11—C10—C14 121.81 (18)
C1—C2—Cl1 119.96 (14) C9—C10—C14 120.12 (19)
C4—C3—C2 119.0 (2) C12—C11—C10 121.44 (18)
C4—C3—H3 120.5 C12—C11—H11 119.3
C2—C3—H3 120.5 C10—C11—H11 119.3
C5—C4—C3 121.1 (2) C11—C12—C13 120.5 (2)
C5—C4—H4 119.4 C11—C12—H12 119.7
C3—C4—H4 119.4 C13—C12—H12 119.7
C4—C5—C6 119.7 (3) C8—C13—C12 119.23 (18)
C4—C5—H5 120.2 C8—C13—H13 120.4
C6—C5—H5 120.2 C12—C13—H13 120.4
C5—C6—C1 120.7 (2) C10—C14—H14A 109.5
C5—C6—H6 119.6 C10—C14—H14B 109.5
C1—C6—H6 119.6 H14A—C14—H14B 109.5
O1—C7—N1 124.64 (14) C10—C14—H14C 109.5
O1—C7—C1 120.67 (15) H14A—C14—H14C 109.5
N1—C7—C1 114.67 (14) H14B—C14—H14C 109.5
C13—C8—C9 119.83 (16) C7—N1—C8 127.93 (13)
C13—C8—N1 117.39 (15) C7—N1—H1 115.0 (11)
C9—C8—N1 122.74 (16) C8—N1—H1 117.1 (11)
C6—C1—C2—C3 −2.6 (3) C13—C8—C9—C10 −0.3 (2)
C7—C1—C2—C3 173.88 (17) N1—C8—C9—C10 177.13 (14)
C6—C1—C2—Cl1 176.38 (15) C8—C9—C10—C11 0.2 (2)
C7—C1—C2—Cl1 −7.1 (2) C8—C9—C10—C14 −178.91 (17)
C1—C2—C3—C4 1.8 (3) C9—C10—C11—C12 −0.2 (3)
Cl1—C2—C3—C4 −177.27 (19) C14—C10—C11—C12 178.9 (2)
C2—C3—C4—C5 −0.1 (4) C10—C11—C12—C13 0.2 (3)
C3—C4—C5—C6 −0.7 (4) C9—C8—C13—C12 0.3 (3)
C4—C5—C6—C1 −0.3 (4) N1—C8—C13—C12 −177.23 (16)
C2—C1—C6—C5 1.9 (3) C11—C12—C13—C8 −0.3 (3)
C7—C1—C6—C5 −174.69 (19) O1—C7—N1—C8 −1.0 (3)
C2—C1—C7—O1 −58.9 (2) C1—C7—N1—C8 177.16 (15)
C6—C1—C7—O1 117.55 (19) C13—C8—N1—C7 −158.57 (16)
C2—C1—C7—N1 122.85 (17) C9—C8—N1—C7 24.0 (2)
C6—C1—C7—N1 −60.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 (1) 2.03 (1) 2.8790 (16) 171 (2)

Symmetry code: (i) y, −x+1, z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5196).

References

  1. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  2. Brandenburg, K. (2002). DIAMOND Crystal Impact GbH, Bonn, Germany.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.
  7. Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.
  8. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  10. Rodrigues, V. Z., Kucková,, L., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o3277. [DOI] [PMC free article] [PubMed]
  11. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005739/sj5196sup1.cif

e-68-0o723-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005739/sj5196Isup2.hkl

e-68-0o723-Isup2.hkl (125.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005739/sj5196Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES