Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o734–o735. doi: 10.1107/S1600536812006265

2-Methyl-3-(2-methyl­phen­yl)-4-oxo-3,4-dihydro­quinazolin-8-yl 4-methyl­benzoate

Adel S El-Azab a,b,, Alaa A-M Abdel-Aziz a,c, Seik Weng Ng d,e, Edward R T Tiekink d,*
PMCID: PMC3295504  PMID: 22412615

Abstract

In the title quinazolin-4-one derivative, C24H20N2O3, both the 4-methyl­benzoate [dihedral angle = 83.90 (9)°] and 2-tolyl [87.88 (9)°] groups are almost orthogonal to the central fused ring system. These aryl groups are oriented towards the quinazolin-4-one-bound methyl group. In the crystal, mol­ecules are connected into a three-dimensional architecture by C—H⋯O, C—H⋯π and π–π [ring centroid-to-centroid separation = 3.6458 (13) Å] inter­actions.

Related literature  

For the pharmacological activity of substituted quinazoline-4(3H)-ones, see: El-Azab & ElTahir (2012); El-Azab et al. (2011); Al-Omary et al. (2010); Al-Obaid et al. (2009); Aziza et al. (1996). For the synthesis and evaluation of the anti­convulsant activity of the title compound, see: El-Azab et al. (2010). For the structure of the benzoate derivative, see: El-Azab et al. (2012).graphic file with name e-68-0o734-scheme1.jpg

Experimental  

Crystal data  

  • C24H20N2O3

  • M r = 384.42

  • Monoclinic, Inline graphic

  • a = 18.8216 (5) Å

  • b = 7.6332 (2) Å

  • c = 13.3092 (3) Å

  • β = 97.286 (2)°

  • V = 1896.68 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.755, T max = 1.000

  • 7966 measured reflections

  • 3883 independent reflections

  • 3478 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.186

  • S = 1.06

  • 3883 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006265/hb6636sup1.cif

e-68-0o734-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006265/hb6636Isup2.hkl

e-68-0o734-Isup2.hkl (190.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006265/hb6636Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C18–C23 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯O2i 0.98 2.55 3.434 (3) 150
C21—H21⋯O3ii 0.95 2.47 3.299 (3) 146
C12—H12⋯Cg1iii 0.95 2.79 3.658 (2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The title compound, (I), a methaqualone analogue, was recently synthesized and evaluated for its anti-convulsant activity (El-Azab et al., 2010). Herein, the crystal structure determination of 3,4-dihydro-2-methyl-3-(2-methylphenyl)-4-oxoquinazolin-8-yl 4-methylbenzoate (I) is reported. These studies were motivated by the observation that substituted quinazoline-4(3H)-ones are known to display various biological activities (El-Azab & ElTahir, 2012; El-Azab et al., 2011; El-Azab et al., 2010; Al-Omary et al., 2010; Al-Obaid et al., 2009; Aziza et al., 1996).

In (I), Fig. 1, the carboxylate residue is co-planar to the benzene ring to which it is connected as seen in the value of the C2—C1—C8—O1 torsion angle -3.8 (3)°. With respect to the central quinazolin-4-one fused ring system [r.m.s. deviation = 0.045 Å for the 10 atoms], both the 4-methylbenzoate and 2-tolyl groups are orthogonal: the dihedral angles between the central plane and six-membered rings being 83.90 (9) and 87.88 (9)°, respectively. Both aryl substituents are orientated towards the methyl group bound to the quinazolin-4-one system and the dihedral angle between the two six-membered rings is 77.04 (11)°. The molecular structure resembles closely that of the benzoate derivative (El-Azab et al., 2012).

In the crystal packing, C—H···O [involving both carbonyl-O atoms] and C—H···π [involving the (C18···C23) benzene ring] interactions, Table 1, lead to the formation of layers in the bc plane. These interdigitate to allow for the formation of π–π interactions between the 4-methylbenzoate rings [ring centroid···centroid separation = 3.6458 (13) Å between centrosymmetrically related (C1–C6) rings; symmetry operation: 1 - x, 2 - y, 1 - z]. The combination of intermolecular interactions leads to a three-dimensional architecture, Fig. 2.

Experimental

A mixture of 8-hydroxymethaqualone (532 mg, 0.002 M) and 4-methylbenzoyl chloride (325 mg, 0.0021 mmol) in 15 ml pyridine was stirred at room temperature for 12 h. The solvent was removed under reduced pressure, and the residue was triturated with water and filtered. The solid obtained was dried and recrystallized from EtOH to yield colourless prisms. m.p. 465–467 K. Yield: 95%. 1H NMR (500 MHz, CDCl3): δ = 8.25–8.22 (m, 3H), 7.64 (d, 1H, J = 7.5 Hz), 7.52 (t, 1H, J = 7.5 Hz), 7.43–7.28 (m, 5H), 7.15 (d, 1H, J = 7.5 Hz), 2.49 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H) p.p.m.. 13C NMR (CDCl3): δ = 17.4, 21.8, 24.3, 120.7, 124.9, 126.4, 126.7, 127.4, 127.6, 127.9, 129.3, 129.6, 130.5, 131.5, 135.4, 136.8, 141.0, 144.5, 146.3, 154.7, 161.2, 165.3 p.p.m.. MS (70 eV): m/z = 384.

Refinement

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.09 and 0.33 e Å-3, respectively, were located 0.92 Å and 0.56 Å from the C18 and C23 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the c axis of the unit-cell contents for (I). The C—H···O, C—H···π and π–π interactions are shown as orange, brown and purple dashed lines, respectively.

Crystal data

C24H20N2O3 F(000) = 808
Mr = 384.42 Dx = 1.346 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybc Cell parameters from 3857 reflections
a = 18.8216 (5) Å θ = 3.4–76.5°
b = 7.6332 (2) Å µ = 0.72 mm1
c = 13.3092 (3) Å T = 100 K
β = 97.286 (2)° Prism, colourless
V = 1896.68 (8) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3883 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3478 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.027
Detector resolution: 10.4041 pixels mm-1 θmax = 76.7°, θmin = 4.7°
ω scans h = −23→23
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −9→9
Tmin = 0.755, Tmax = 1.000 l = −16→8
7966 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0962P)2 + 2.188P] where P = (Fo2 + 2Fc2)/3
3883 reflections (Δ/σ)max < 0.001
265 parameters Δρmax = 1.09 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.37531 (7) 0.7195 (2) 0.60223 (11) 0.0223 (3)
O2 0.31966 (8) 0.9210 (2) 0.49638 (12) 0.0279 (4)
O3 0.10542 (9) 0.3305 (2) 0.65096 (12) 0.0339 (4)
N1 0.27420 (9) 0.4903 (2) 0.50849 (12) 0.0211 (4)
N2 0.17341 (10) 0.3084 (3) 0.52035 (13) 0.0267 (4)
C1 0.43599 (11) 0.8207 (3) 0.46864 (15) 0.0212 (4)
C2 0.49532 (11) 0.7190 (3) 0.50441 (16) 0.0238 (4)
H2 0.4958 0.6552 0.5658 0.029*
C3 0.55359 (11) 0.7105 (3) 0.45073 (16) 0.0246 (4)
H3 0.5939 0.6414 0.4760 0.030*
C4 0.55385 (11) 0.8024 (3) 0.35973 (16) 0.0237 (4)
C5 0.49471 (12) 0.9054 (3) 0.32543 (16) 0.0254 (5)
H5 0.4943 0.9695 0.2642 0.030*
C6 0.43625 (11) 0.9158 (3) 0.37932 (16) 0.0235 (4)
H6 0.3965 0.9877 0.3553 0.028*
C7 0.61739 (12) 0.7901 (3) 0.30194 (17) 0.0277 (5)
H7A 0.6324 0.6674 0.2988 0.041*
H7B 0.6569 0.8599 0.3363 0.041*
H7C 0.6042 0.8348 0.2331 0.041*
C8 0.37095 (11) 0.8299 (3) 0.52067 (15) 0.0209 (4)
C9 0.31180 (11) 0.6918 (3) 0.64461 (15) 0.0210 (4)
C10 0.30198 (11) 0.7733 (3) 0.73413 (15) 0.0233 (4)
H10 0.3360 0.8566 0.7634 0.028*
C11 0.24158 (12) 0.7332 (3) 0.78214 (15) 0.0255 (5)
H11 0.2340 0.7921 0.8428 0.031*
C12 0.19361 (11) 0.6093 (3) 0.74151 (15) 0.0236 (4)
H12 0.1533 0.5808 0.7746 0.028*
C13 0.20422 (11) 0.5243 (3) 0.65079 (15) 0.0214 (4)
C14 0.26278 (10) 0.5673 (3) 0.59976 (14) 0.0195 (4)
C15 0.15613 (11) 0.3839 (3) 0.61094 (15) 0.0252 (5)
C16 0.23027 (11) 0.3681 (3) 0.47275 (15) 0.0228 (4)
C17 0.24100 (12) 0.2818 (3) 0.37470 (16) 0.0270 (5)
H17A 0.2801 0.3402 0.3458 0.040*
H17B 0.1968 0.2906 0.3273 0.040*
H17C 0.2531 0.1581 0.3869 0.040*
C18 0.12952 (13) 0.1602 (3) 0.47919 (16) 0.0311 (5)
C19 0.15047 (12) −0.0095 (3) 0.50999 (18) 0.0316 (5)
H19 0.1922 −0.0288 0.5567 0.038*
C20 0.10838 (14) −0.1495 (3) 0.47021 (19) 0.0348 (5)
H20 0.1219 −0.2665 0.4880 0.042*
C21 0.04685 (13) −0.1168 (4) 0.40471 (19) 0.0362 (6)
H21 0.0177 −0.2127 0.3794 0.043*
C22 0.02648 (14) 0.0491 (4) 0.37508 (18) 0.0350 (6)
H22 −0.0158 0.0669 0.3291 0.042*
C23 0.06853 (13) 0.1950 (4) 0.41299 (18) 0.0333 (5)
C24 0.04695 (14) 0.3739 (4) 0.3848 (2) 0.0406 (6)
H24A 0.0457 0.4443 0.4461 0.061*
H24B −0.0008 0.3725 0.3455 0.061*
H24C 0.0814 0.4250 0.3437 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0183 (7) 0.0267 (8) 0.0224 (7) −0.0018 (6) 0.0046 (5) 0.0041 (6)
O2 0.0240 (7) 0.0329 (9) 0.0279 (8) 0.0037 (6) 0.0072 (6) 0.0059 (6)
O3 0.0299 (8) 0.0486 (11) 0.0258 (8) −0.0159 (7) 0.0138 (6) −0.0061 (7)
N1 0.0214 (8) 0.0249 (9) 0.0181 (8) −0.0008 (7) 0.0062 (6) 0.0012 (7)
N2 0.0267 (9) 0.0356 (11) 0.0194 (8) −0.0107 (8) 0.0094 (7) −0.0046 (7)
C1 0.0214 (10) 0.0221 (10) 0.0205 (9) −0.0031 (8) 0.0043 (7) −0.0025 (8)
C2 0.0239 (10) 0.0247 (11) 0.0233 (10) −0.0016 (8) 0.0044 (8) 0.0014 (8)
C3 0.0232 (10) 0.0225 (11) 0.0286 (11) 0.0005 (8) 0.0054 (8) 0.0004 (8)
C4 0.0246 (10) 0.0235 (10) 0.0243 (10) −0.0048 (8) 0.0083 (8) −0.0056 (8)
C5 0.0290 (11) 0.0271 (11) 0.0209 (10) −0.0024 (9) 0.0065 (8) 0.0012 (8)
C6 0.0230 (10) 0.0247 (10) 0.0227 (10) −0.0004 (8) 0.0032 (8) 0.0008 (8)
C7 0.0283 (11) 0.0281 (11) 0.0286 (11) −0.0006 (9) 0.0113 (9) −0.0020 (9)
C8 0.0212 (9) 0.0223 (10) 0.0193 (9) −0.0029 (8) 0.0030 (7) −0.0009 (7)
C9 0.0189 (9) 0.0239 (10) 0.0209 (9) 0.0005 (8) 0.0057 (7) 0.0044 (8)
C10 0.0269 (10) 0.0209 (10) 0.0218 (10) −0.0011 (8) 0.0015 (8) 0.0013 (8)
C11 0.0321 (11) 0.0273 (11) 0.0183 (9) 0.0010 (9) 0.0080 (8) −0.0001 (8)
C12 0.0238 (10) 0.0286 (11) 0.0195 (9) 0.0006 (8) 0.0075 (8) 0.0018 (8)
C13 0.0205 (9) 0.0266 (10) 0.0178 (9) −0.0003 (8) 0.0054 (7) 0.0024 (8)
C14 0.0201 (9) 0.0231 (10) 0.0159 (9) 0.0013 (8) 0.0040 (7) 0.0022 (7)
C15 0.0237 (10) 0.0344 (12) 0.0188 (9) −0.0042 (9) 0.0074 (8) −0.0003 (8)
C16 0.0241 (10) 0.0273 (11) 0.0183 (9) −0.0028 (8) 0.0078 (8) 0.0016 (8)
C17 0.0309 (11) 0.0317 (12) 0.0203 (10) −0.0060 (9) 0.0108 (8) −0.0036 (8)
C18 0.0319 (12) 0.0415 (14) 0.0218 (10) −0.0080 (10) 0.0102 (9) −0.0064 (9)
C19 0.0276 (11) 0.0339 (13) 0.0347 (12) −0.0023 (9) 0.0096 (9) −0.0011 (10)
C20 0.0356 (12) 0.0355 (13) 0.0355 (12) −0.0007 (10) 0.0131 (10) 0.0001 (10)
C21 0.0293 (12) 0.0482 (15) 0.0334 (12) −0.0061 (11) 0.0128 (9) −0.0019 (11)
C22 0.0357 (12) 0.0456 (14) 0.0254 (11) 0.0019 (11) 0.0106 (9) −0.0053 (10)
C23 0.0307 (12) 0.0432 (14) 0.0276 (11) −0.0010 (10) 0.0106 (9) −0.0032 (10)
C24 0.0332 (13) 0.0548 (17) 0.0332 (13) 0.0001 (12) 0.0013 (10) −0.0041 (12)

Geometric parameters (Å, º)

O1—C8 1.368 (2) C10—C11 1.407 (3)
O1—C9 1.401 (2) C10—H10 0.9500
O2—C8 1.201 (3) C11—C12 1.370 (3)
O3—C15 1.220 (3) C11—H11 0.9500
N1—C16 1.296 (3) C12—C13 1.407 (3)
N1—C14 1.390 (3) C12—H12 0.9500
N2—C16 1.388 (3) C13—C14 1.405 (3)
N2—C15 1.411 (3) C13—C15 1.459 (3)
N2—C18 1.465 (3) C16—C17 1.498 (3)
C1—C6 1.393 (3) C17—H17A 0.9800
C1—C2 1.394 (3) C17—H17B 0.9800
C1—C8 1.483 (3) C17—H17C 0.9800
C2—C3 1.384 (3) C18—C23 1.381 (3)
C2—H2 0.9500 C18—C19 1.400 (4)
C3—C4 1.400 (3) C19—C20 1.394 (3)
C3—H3 0.9500 C19—H19 0.9500
C4—C5 1.391 (3) C20—C21 1.381 (4)
C4—C7 1.505 (3) C20—H20 0.9500
C5—C6 1.390 (3) C21—C22 1.367 (4)
C5—H5 0.9500 C21—H21 0.9500
C6—H6 0.9500 C22—C23 1.421 (4)
C7—H7A 0.9800 C22—H22 0.9500
C7—H7B 0.9800 C23—C24 1.460 (4)
C7—H7C 0.9800 C24—H24A 0.9800
C9—C10 1.377 (3) C24—H24B 0.9800
C9—C14 1.404 (3) C24—H24C 0.9800
C8—O1—C9 116.36 (15) C13—C12—H12 120.0
C16—N1—C14 117.56 (17) C14—C13—C12 120.85 (19)
C16—N2—C15 122.04 (18) C14—C13—C15 118.97 (18)
C16—N2—C18 120.91 (17) C12—C13—C15 120.12 (18)
C15—N2—C18 117.04 (17) N1—C14—C9 119.44 (17)
C6—C1—C2 119.51 (19) N1—C14—C13 122.78 (18)
C6—C1—C8 117.80 (19) C9—C14—C13 117.77 (18)
C2—C1—C8 122.68 (19) O3—C15—N2 121.0 (2)
C3—C2—C1 120.2 (2) O3—C15—C13 124.76 (19)
C3—C2—H2 119.9 N2—C15—C13 114.28 (17)
C1—C2—H2 119.9 N1—C16—N2 124.17 (18)
C2—C3—C4 120.9 (2) N1—C16—C17 119.07 (18)
C2—C3—H3 119.6 N2—C16—C17 116.75 (18)
C4—C3—H3 119.6 C16—C17—H17A 109.5
C5—C4—C3 118.45 (19) C16—C17—H17B 109.5
C5—C4—C7 121.5 (2) H17A—C17—H17B 109.5
C3—C4—C7 120.1 (2) C16—C17—H17C 109.5
C6—C5—C4 121.1 (2) H17A—C17—H17C 109.5
C6—C5—H5 119.5 H17B—C17—H17C 109.5
C4—C5—H5 119.5 C23—C18—C19 123.1 (2)
C5—C6—C1 119.9 (2) C23—C18—N2 118.2 (2)
C5—C6—H6 120.0 C19—C18—N2 118.7 (2)
C1—C6—H6 120.0 C20—C19—C18 118.2 (2)
C4—C7—H7A 109.5 C20—C19—H19 120.9
C4—C7—H7B 109.5 C18—C19—H19 120.9
H7A—C7—H7B 109.5 C21—C20—C19 119.4 (2)
C4—C7—H7C 109.5 C21—C20—H20 120.3
H7A—C7—H7C 109.5 C19—C20—H20 120.3
H7B—C7—H7C 109.5 C22—C21—C20 122.1 (3)
O2—C8—O1 122.40 (18) C22—C21—H21 118.9
O2—C8—C1 125.79 (19) C20—C21—H21 118.9
O1—C8—C1 111.81 (17) C21—C22—C23 120.0 (2)
C10—C9—O1 119.68 (18) C21—C22—H22 120.0
C10—C9—C14 121.38 (18) C23—C22—H22 120.0
O1—C9—C14 118.63 (18) C18—C23—C22 117.1 (2)
C9—C10—C11 120.0 (2) C18—C23—C24 121.7 (2)
C9—C10—H10 120.0 C22—C23—C24 121.2 (2)
C11—C10—H10 120.0 C23—C24—H24A 109.5
C12—C11—C10 120.06 (19) C23—C24—H24B 109.5
C12—C11—H11 120.0 H24A—C24—H24B 109.5
C10—C11—H11 120.0 C23—C24—H24C 109.5
C11—C12—C13 119.92 (19) H24A—C24—H24C 109.5
C11—C12—H12 120.0 H24B—C24—H24C 109.5
C6—C1—C2—C3 −1.0 (3) C12—C13—C14—C9 2.7 (3)
C8—C1—C2—C3 177.69 (19) C15—C13—C14—C9 −174.38 (18)
C1—C2—C3—C4 −0.4 (3) C16—N2—C15—O3 179.2 (2)
C2—C3—C4—C5 1.2 (3) C18—N2—C15—O3 −2.1 (3)
C2—C3—C4—C7 −179.4 (2) C16—N2—C15—C13 −1.9 (3)
C3—C4—C5—C6 −0.7 (3) C18—N2—C15—C13 176.80 (19)
C7—C4—C5—C6 180.0 (2) C14—C13—C15—O3 176.9 (2)
C4—C5—C6—C1 −0.7 (3) C12—C13—C15—O3 −0.3 (3)
C2—C1—C6—C5 1.5 (3) C14—C13—C15—N2 −2.0 (3)
C8—C1—C6—C5 −177.18 (19) C12—C13—C15—N2 −179.15 (19)
C9—O1—C8—O2 12.0 (3) C14—N1—C16—N2 −0.8 (3)
C9—O1—C8—C1 −167.83 (17) C14—N1—C16—C17 −179.84 (18)
C6—C1—C8—O2 −5.0 (3) C15—N2—C16—N1 3.5 (3)
C2—C1—C8—O2 176.3 (2) C18—N2—C16—N1 −175.1 (2)
C6—C1—C8—O1 174.84 (17) C15—N2—C16—C17 −177.4 (2)
C2—C1—C8—O1 −3.8 (3) C18—N2—C16—C17 4.0 (3)
C8—O1—C9—C10 −103.9 (2) C16—N2—C18—C23 −92.2 (3)
C8—O1—C9—C14 82.5 (2) C15—N2—C18—C23 89.1 (3)
O1—C9—C10—C11 −173.89 (18) C16—N2—C18—C19 88.9 (3)
C14—C9—C10—C11 −0.4 (3) C15—N2—C18—C19 −89.7 (3)
C9—C10—C11—C12 1.9 (3) C23—C18—C19—C20 1.3 (3)
C10—C11—C12—C13 −1.1 (3) N2—C18—C19—C20 −179.9 (2)
C11—C12—C13—C14 −1.3 (3) C18—C19—C20—C21 −1.9 (3)
C11—C12—C13—C15 175.8 (2) C19—C20—C21—C22 1.8 (4)
C16—N1—C14—C9 175.77 (19) C20—C21—C22—C23 −0.9 (4)
C16—N1—C14—C13 −3.4 (3) C19—C18—C23—C22 −0.5 (3)
C10—C9—C14—N1 178.96 (19) N2—C18—C23—C22 −179.30 (19)
O1—C9—C14—N1 −7.5 (3) C19—C18—C23—C24 178.1 (2)
C10—C9—C14—C13 −1.9 (3) N2—C18—C23—C24 −0.7 (3)
O1—C9—C14—C13 171.66 (17) C21—C22—C23—C18 0.3 (3)
C12—C13—C14—N1 −178.11 (18) C21—C22—C23—C24 −178.3 (2)
C15—C13—C14—N1 4.8 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C18–C23 benzene ring.

D—H···A D—H H···A D···A D—H···A
C17—H17C···O2i 0.98 2.55 3.434 (3) 150
C21—H21···O3ii 0.95 2.47 3.299 (3) 146
C12—H12···Cg1iii 0.95 2.79 3.658 (2) 153

Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6636).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Al-Obaid, A. M., Abdel-Hamide, S. G., El-Kashef, H. A., Abdel-Aziz, A. A.-M., El-Azab, A. S., Al-Khamees, H. A. & El-Subbagh, H. I. (2009). Eur. J. Med. Chem. 44, 2379–2391. [DOI] [PubMed]
  3. Al-Omary, F. A., Abou-Zeid, L. A., Nagi, M. N., Habib, S. E., Abdel-Aziz, A. A.-M., Hamide, S. G., Al-Omar, M. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2010). Bioorg. Med. Chem. 18, 2849–2863. [DOI] [PubMed]
  4. Aziza, M. A., Nassar, M. W. I., Abdel Hamid, S. G., El-Hakim, A. E. & El-Azab, A. S. (1996). Indian J. Heterocycl. Chem, 6, 25–30.
  5. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. El-Azab, A. S., Abdel-Aziz, A. A.-M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o732–o733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198. [DOI] [PubMed]
  8. El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333. [DOI] [PubMed]
  9. El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.
  10. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006265/hb6636sup1.cif

e-68-0o734-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006265/hb6636Isup2.hkl

e-68-0o734-Isup2.hkl (190.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006265/hb6636Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES