Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o737. doi: 10.1107/S1600536812006290

2-(4-Meth­oxy­phen­yl)-4-oxo-4-phenyl­butane­nitrile

Alaa A-M Abdel-Aziz a,b,, Adel S El-Azab a,c, Seik Weng Ng d,e, Edward R T Tiekink d,*
PMCID: PMC3295506  PMID: 22412617

Abstract

The title mol­ecule, C17H15NO2, is twisted, the dihedral angle between the terminal benzene rings being 63.30 (6)°. In the crystal, C—H⋯O and C—H⋯N inter­actions lead to supra­molecular layers in the ab plane. These are connected along the c axis via C—H⋯π inter­actions.

Related literature  

For background to the synthetic applications of 2,4-diaryl-4-oxo-butane­nitriles, see: Coudert et al. (1990), 1988); Iida et al. (2007). For the preparation of the title compound, see: Coudert et al. (1990). For the structure of the unsubstituted parent compound, see: Abdel-Aziz et al. (2012).graphic file with name e-68-0o737-scheme1.jpg

Experimental  

Crystal data  

  • C17H15NO2

  • M r = 265.30

  • Orthorhombic, Inline graphic

  • a = 9.5730 (2) Å

  • b = 8.7748 (2) Å

  • c = 32.0620 (7) Å

  • V = 2693.25 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.651, T max = 1.000

  • 6569 measured reflections

  • 2764 independent reflections

  • 2410 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.101

  • S = 1.02

  • 2764 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006290/xu5470sup1.cif

e-68-0o737-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006290/xu5470Isup2.hkl

e-68-0o737-Isup2.hkl (135.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006290/xu5470Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8b⋯O1i 0.99 2.44 3.3102 (16) 147
C15—H15⋯N1ii 0.95 2.62 3.4250 (17) 143
C4—H4⋯Cgiii 0.95 2.82 3.5787 (14) 138
C17—H17c⋯Cgiv 0.98 2.89 3.6754 (15) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Research Center of Pharmacy, King Saud University, Riyadh, Saudi Arabia. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

An important class of difunctional intermediates for both the synthesis of biologically active heterocycles, such as pyridazine derivatives, and as a source ketone (Coudert et al., 1990; Coudert et al., 1988; Iida et al., 2007) are the 2,4-diaryl-4-oxo-butanenitriles. Herein, the crystal structure of a 2,4-diaryl-4-oxo-butanenitrile derivative, 4-(4-methoxyphenyl)-4-oxo-2-phenylbutanenitrile (I), is described. The structure of the parent compound is known (Abdel-Aziz et al., 2012).

In (I), Fig. 1, the terminal benzene rings form a dihedral angle of 63.30 (6)° indicating a considerable twist in the molecule. The benzyl group is twisted out of the plane of the benzene ring to which it is connected [the C2—C1—C7—C8 torsion angle is -8.58 (17)°] and in addition there is a twist around the C8—C9 bond [the C7—C8—C9—C11 torsion angle is 173.19 (10)°]. The methoxy group is co-planar with the benzene ring to which it is connected [the C17—O2—C14—C13 torsion angle is 3.03 (17)°].

In the crystal packing, molecules are linked by C—H···O and C—H···N interactions into supramolecular layers in the ab plane, Fig. 2 and Table 1. Layers are connected along the c axis via C—H···π interactions involving the (C11–C16) ring, Fig. 3 and Table 1.

Experimental

Acetone cyanohydrin (0.045 mol) and 10% aqueous sodium carbonate (0.0015 mol and 1.5 ml water) were added to solution of 3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (0.015 mol) in ethanol (50 ml). The mixture was heated at reflux temperature for 4 h. After cooling, the product which separated out was filtered off and recrystallized from methanol solution.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular array in the ab plane in (I). The C—H···O and C—H···N interactions are shown as orange and blue dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents for (I). The C—H···O, C—H···N and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.

Crystal data

C17H15NO2 F(000) = 1120
Mr = 265.30 Dx = 1.309 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2587 reflections
a = 9.5730 (2) Å θ = 2.8–76.0°
b = 8.7748 (2) Å µ = 0.69 mm1
c = 32.0620 (7) Å T = 100 K
V = 2693.25 (10) Å3 Prism, colourless
Z = 8 0.30 × 0.30 × 0.05 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2764 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2410 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.019
Detector resolution: 10.4041 pixels mm-1 θmax = 76.2°, θmin = 2.8°
ω scan h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −10→10
Tmin = 0.651, Tmax = 1.000 l = −33→39
6569 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.8432P] where P = (Fo2 + 2Fc2)/3
2764 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27711 (10) 0.07603 (11) 0.68494 (3) 0.0294 (2)
O2 0.65190 (10) 0.70231 (10) 0.52150 (3) 0.0267 (2)
N1 0.49228 (12) −0.01483 (13) 0.60258 (3) 0.0282 (3)
C1 0.37272 (13) 0.18133 (13) 0.74651 (4) 0.0214 (3)
C2 0.47344 (13) 0.27465 (14) 0.76484 (4) 0.0235 (3)
H2 0.5322 0.3358 0.7478 0.028*
C3 0.48802 (14) 0.27836 (15) 0.80803 (4) 0.0261 (3)
H3 0.5570 0.3418 0.8204 0.031*
C4 0.40215 (14) 0.18967 (15) 0.83309 (4) 0.0262 (3)
H4 0.4124 0.1922 0.8625 0.031*
C5 0.30090 (14) 0.09693 (15) 0.81498 (4) 0.0268 (3)
H5 0.2420 0.0364 0.8321 0.032*
C6 0.28593 (13) 0.09281 (15) 0.77198 (4) 0.0244 (3)
H6 0.2165 0.0297 0.7598 0.029*
C7 0.35473 (13) 0.17095 (14) 0.70034 (4) 0.0225 (3)
C8 0.43447 (13) 0.28103 (14) 0.67269 (4) 0.0231 (3)
H8A 0.5359 0.2687 0.6777 0.028*
H8B 0.4086 0.3868 0.6802 0.028*
C9 0.40397 (13) 0.25499 (14) 0.62604 (4) 0.0228 (3)
H9 0.3005 0.2589 0.6220 0.027*
C10 0.45287 (13) 0.10206 (15) 0.61327 (4) 0.0230 (3)
C11 0.46935 (13) 0.37597 (14) 0.59828 (4) 0.0222 (3)
C12 0.38502 (13) 0.48068 (15) 0.57791 (4) 0.0251 (3)
H12 0.2867 0.4759 0.5816 0.030*
C13 0.44116 (14) 0.59264 (15) 0.55215 (4) 0.0252 (3)
H13 0.3818 0.6640 0.5386 0.030*
C14 0.58517 (14) 0.59909 (14) 0.54638 (4) 0.0219 (3)
C15 0.67095 (13) 0.49409 (14) 0.56660 (4) 0.0230 (3)
H15 0.7693 0.4985 0.5628 0.028*
C16 0.61369 (13) 0.38362 (14) 0.59212 (4) 0.0233 (3)
H16 0.6730 0.3122 0.6056 0.028*
C17 0.56675 (16) 0.81515 (16) 0.50178 (4) 0.0293 (3)
H17A 0.6249 0.8788 0.4836 0.044*
H17B 0.5226 0.8790 0.5231 0.044*
H17C 0.4944 0.7650 0.4851 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0261 (5) 0.0329 (5) 0.0292 (5) −0.0061 (4) 0.0019 (4) −0.0041 (4)
O2 0.0286 (5) 0.0262 (5) 0.0254 (4) 0.0001 (4) 0.0000 (4) 0.0033 (4)
N1 0.0313 (6) 0.0268 (6) 0.0264 (5) −0.0021 (5) 0.0035 (5) −0.0028 (4)
C1 0.0201 (6) 0.0188 (6) 0.0252 (6) 0.0040 (5) 0.0029 (5) 0.0002 (4)
C2 0.0228 (6) 0.0201 (6) 0.0276 (6) 0.0005 (5) 0.0042 (5) 0.0007 (5)
C3 0.0250 (6) 0.0240 (6) 0.0294 (6) 0.0010 (5) −0.0003 (5) −0.0027 (5)
C4 0.0283 (6) 0.0264 (7) 0.0239 (6) 0.0055 (5) 0.0015 (5) 0.0021 (5)
C5 0.0247 (6) 0.0264 (6) 0.0294 (6) 0.0027 (5) 0.0066 (5) 0.0053 (5)
C6 0.0203 (6) 0.0220 (6) 0.0309 (6) 0.0003 (5) 0.0023 (5) 0.0004 (5)
C7 0.0188 (5) 0.0213 (6) 0.0274 (6) 0.0032 (5) 0.0024 (5) −0.0028 (5)
C8 0.0235 (6) 0.0227 (6) 0.0232 (6) 0.0008 (5) 0.0013 (5) −0.0022 (5)
C9 0.0204 (6) 0.0239 (6) 0.0241 (6) 0.0012 (5) −0.0005 (5) −0.0009 (5)
C10 0.0227 (6) 0.0268 (7) 0.0197 (5) −0.0034 (5) 0.0005 (5) −0.0003 (5)
C11 0.0234 (6) 0.0236 (6) 0.0197 (5) 0.0014 (5) −0.0005 (5) −0.0029 (5)
C12 0.0202 (6) 0.0281 (7) 0.0269 (6) 0.0029 (5) −0.0003 (5) −0.0013 (5)
C13 0.0255 (6) 0.0255 (6) 0.0246 (6) 0.0048 (5) −0.0035 (5) 0.0000 (5)
C14 0.0263 (6) 0.0208 (6) 0.0186 (5) −0.0005 (5) −0.0001 (5) −0.0028 (4)
C15 0.0193 (6) 0.0260 (6) 0.0237 (6) 0.0015 (5) −0.0010 (5) −0.0041 (5)
C16 0.0235 (6) 0.0238 (6) 0.0225 (6) 0.0043 (5) −0.0032 (5) −0.0023 (5)
C17 0.0375 (7) 0.0271 (7) 0.0233 (6) 0.0032 (6) −0.0012 (5) 0.0035 (5)

Geometric parameters (Å, º)

O1—C7 1.2205 (15) C8—H8A 0.9900
O2—C14 1.3656 (15) C8—H8B 0.9900
O2—C17 1.4299 (15) C9—C10 1.4791 (17)
N1—C10 1.1454 (17) C9—C11 1.5201 (17)
C1—C2 1.3949 (17) C9—H9 1.0000
C1—C6 1.4002 (17) C11—C12 1.3865 (17)
C1—C7 1.4931 (17) C11—C16 1.3975 (18)
C2—C3 1.3921 (18) C12—C13 1.3915 (18)
C2—H2 0.9500 C12—H12 0.9500
C3—C4 1.3881 (18) C13—C14 1.3920 (18)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.3924 (19) C14—C15 1.3941 (17)
C4—H4 0.9500 C15—C16 1.3818 (18)
C5—C6 1.3865 (18) C15—H15 0.9500
C5—H5 0.9500 C16—H16 0.9500
C6—H6 0.9500 C17—H17A 0.9800
C7—C8 1.5172 (17) C17—H17B 0.9800
C8—C9 1.5409 (16) C17—H17C 0.9800
C14—O2—C17 116.80 (10) C11—C9—C8 112.75 (10)
C2—C1—C6 119.34 (11) C10—C9—H9 108.0
C2—C1—C7 122.23 (11) C11—C9—H9 108.0
C6—C1—C7 118.43 (11) C8—C9—H9 108.0
C3—C2—C1 120.14 (12) N1—C10—C9 178.38 (13)
C3—C2—H2 119.9 C12—C11—C16 118.50 (12)
C1—C2—H2 119.9 C12—C11—C9 119.93 (11)
C4—C3—C2 120.21 (12) C16—C11—C9 121.57 (11)
C4—C3—H3 119.9 C11—C12—C13 121.51 (12)
C2—C3—H3 119.9 C11—C12—H12 119.2
C3—C4—C5 119.91 (12) C13—C12—H12 119.2
C3—C4—H4 120.0 C14—C13—C12 119.34 (12)
C5—C4—H4 120.0 C14—C13—H13 120.3
C6—C5—C4 120.12 (12) C12—C13—H13 120.3
C6—C5—H5 119.9 O2—C14—C13 124.60 (11)
C4—C5—H5 119.9 O2—C14—C15 115.75 (11)
C5—C6—C1 120.28 (12) C13—C14—C15 119.65 (12)
C5—C6—H6 119.9 C16—C15—C14 120.35 (12)
C1—C6—H6 119.9 C16—C15—H15 119.8
O1—C7—C1 120.86 (11) C14—C15—H15 119.8
O1—C7—C8 120.30 (11) C15—C16—C11 120.64 (12)
C1—C7—C8 118.85 (11) C15—C16—H16 119.7
C7—C8—C9 112.17 (10) C11—C16—H16 119.7
C7—C8—H8A 109.2 O2—C17—H17A 109.5
C9—C8—H8A 109.2 O2—C17—H17B 109.5
C7—C8—H8B 109.2 H17A—C17—H17B 109.5
C9—C8—H8B 109.2 O2—C17—H17C 109.5
H8A—C8—H8B 107.9 H17A—C17—H17C 109.5
C10—C9—C11 109.95 (10) H17B—C17—H17C 109.5
C10—C9—C8 110.08 (10)
C6—C1—C2—C3 0.58 (18) C10—C9—C11—C12 126.52 (12)
C7—C1—C2—C3 −178.79 (11) C8—C9—C11—C12 −110.23 (13)
C1—C2—C3—C4 −0.23 (19) C10—C9—C11—C16 −52.54 (15)
C2—C3—C4—C5 −0.13 (19) C8—C9—C11—C16 70.70 (15)
C3—C4—C5—C6 0.13 (19) C16—C11—C12—C13 −0.69 (18)
C4—C5—C6—C1 0.23 (19) C9—C11—C12—C13 −179.78 (11)
C2—C1—C6—C5 −0.58 (18) C11—C12—C13—C14 0.55 (19)
C7—C1—C6—C5 178.81 (11) C17—O2—C14—C13 3.03 (17)
C2—C1—C7—O1 171.59 (11) C17—O2—C14—C15 −177.49 (10)
C6—C1—C7—O1 −7.78 (17) C12—C13—C14—O2 179.13 (11)
C2—C1—C7—C8 −8.58 (17) C12—C13—C14—C15 −0.33 (18)
C6—C1—C7—C8 172.05 (11) O2—C14—C15—C16 −179.24 (10)
O1—C7—C8—C9 −0.11 (16) C13—C14—C15—C16 0.27 (18)
C1—C7—C8—C9 −179.94 (10) C14—C15—C16—C11 −0.42 (18)
C7—C8—C9—C10 −63.64 (13) C12—C11—C16—C15 0.62 (18)
C7—C8—C9—C11 173.19 (10) C9—C11—C16—C15 179.70 (11)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
C8—H8b···O1i 0.99 2.44 3.3102 (16) 147
C15—H15···N1ii 0.95 2.62 3.4250 (17) 143
C4—H4···Cgiii 0.95 2.82 3.5787 (14) 138
C17—H17c···Cgiv 0.98 2.89 3.6754 (15) 138

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+3/2, y+1/2, z; (iii) x+3/2, −y−1/2, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5470).

References

  1. Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst E68, o736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799–802.
  5. Coudert, P., Rubat, C., Couquelet, J. & Tronche, P. (1990). J. Pharm. Belg. 45, 191–195. [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Iida, H., Moromizato, T., Hamana, H. & Matsumoto, K. (2007). Tetrahedron Lett. 48, 2037–2039.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006290/xu5470sup1.cif

e-68-0o737-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006290/xu5470Isup2.hkl

e-68-0o737-Isup2.hkl (135.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006290/xu5470Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES