Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o743. doi: 10.1107/S1600536812006150

1,3-Bis(1-cyclo­hexyl­eth­yl)imidazolidine-2-thione

M Naveed Umar a, M Nawaz Tahir b,*, Mohammad Shoaib c, Akbar Ali a, Ziauddin a
PMCID: PMC3295511  PMID: 22412622

Abstract

The complete mol­ecule of the title compound, C19H34N2S, is generated by crystallographic twofold symmetry, with the C=S group lying on the rotation axis. A short C—H⋯S contact occurs in the mol­ecule. The five-membered ring is twisted and the cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the mean plane of the five-membered ring and the basal plane of the cyclo­hexyl ring is 75.32 (13)°.

Related literature  

For a related structure, see: Kazak et al. (2005).graphic file with name e-68-0o743-scheme1.jpg

Experimental  

Crystal data  

  • C19H34N2S

  • M r = 322.54

  • Tetragonal, Inline graphic

  • a = 6.1008 (3) Å

  • c = 53.790 (2) Å

  • V = 2002.04 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.957, T max = 0.966

  • 18805 measured reflections

  • 2500 independent reflections

  • 1357 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.176

  • S = 1.04

  • 2500 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983), with 874 Friedel pairs

  • Flack parameter: 0.0 (2)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006150/hb6637sup1.cif

e-68-0o743-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006150/hb6637Isup2.hkl

e-68-0o743-Isup2.hkl (120.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006150/hb6637Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S1 0.98 2.65 3.174 (3) 114

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors at Malakand University are also grateful for financial support provided by the Higher Education Commission (HEC), Islamabad, Pakistan.

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1) has been synthesized as a part of our project related to imidazolidinethione.

The crystal structure of 1,3-dibenzoyl-4,5-dihydro-1H-imidazole-2(3H)-thione (Kazak et al., 2005) has been published which is related to the title compound (I), (Fig. 1).

The molecule has twofold symmetry about the C═S (C1═S1) of imidazolidinethione and therefore, the asymmetric unit is half of the molecule. The asymmetric part of imidazolidinethione moiety A (S1/C1/N1/C2) and the basal plane of cyclohexyl ring B (C6/C7/C9/C10) are almost planar with r.m.s. deviations of 0.036 and 0.004 Å, respectively. The dihedral angle between A/B is 75.32 (13)°. The cyclohexyl adopts chair conformation with apical C-atoms C5 and C8 at a distance of -0.651 (5) and 0.638 (8) Å, respectively from the basal plane B. There exist weak intramolecular H-bondings of C—H···S type (Table 1, Fig. 1) and form S(5) ring motif. No other interaction is found in the crystal.

Experimental

(S)-1-cyclohexylethanamine (2.5 equiv.) and 1,2-dibromoethane (1 equiv.) were placed in a pressure vessel and heated at 393 K for 5 h, during which the reaction mixture solidified. The system was cooled to room temperature and NaOH (1 N, 20 ml) and ethyl acetate (20 ml) were added in to the reaction mixture. After dissolving the reaction mixture, the crude product was extracted with ethyl acetate (3 × 25 ml). The combined organic layers were concentrated and subjected to column chromatography. The product obtained from column chromatography (1 equiv.) was added to toluene (0.4 M) in pressure vessel and thiocarbonyldiimidazol (1.1 equiv.) was added to it. This mixture was heated about 373 K for 15 h. Again the extraction with ethyl acetate (3 × 25 ml) was carried out by using column chromatography to get the required product. Yield: 90%. Colourless prisms of (I) were obtained by recrystallizing from methanol after 48 h.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the short C—H···S contacts.

Crystal data

C19H34N2S Dx = 1.070 Mg m3
Mr = 322.54 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 1358 reflections
Hall symbol: P 4abw 2nw θ = 3.0–28.3°
a = 6.1008 (3) Å µ = 0.16 mm1
c = 53.790 (2) Å T = 296 K
V = 2002.04 (17) Å3 Prism, colourless
Z = 4 0.30 × 0.25 × 0.20 mm
F(000) = 712

Data collection

Bruker Kappa APEXII CCD diffractometer 2500 independent reflections
Radiation source: fine-focus sealed tube 1357 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
Detector resolution: 7.50 pixels mm-1 θmax = 28.3°, θmin = 3.0°
ω scans h = −8→4
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −7→8
Tmin = 0.957, Tmax = 0.966 l = −71→65
18805 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.069P)2 + 0.4327P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2500 reflections Δρmax = 0.12 e Å3
102 parameters Δρmin = −0.12 e Å3
0 restraints Absolute structure: Flack (1983), with 874 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.0 (2)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56724 (12) 0.56724 (12) 0.0000 0.0822 (4)
N1 0.2683 (4) 0.2943 (4) 0.02021 (4) 0.0735 (7)
C1 0.3729 (4) 0.3729 (4) 0.0000 0.0652 (10)
C2 0.0922 (6) 0.1442 (6) 0.01337 (5) 0.0868 (10)
H2A −0.0500 0.2138 0.0149 0.104*
H2B 0.0950 0.0131 0.0236 0.104*
C3 0.2873 (5) 0.3852 (5) 0.04524 (5) 0.0696 (8)
H3 0.4132 0.4849 0.0451 0.083*
C4 0.0864 (7) 0.5222 (6) 0.05128 (8) 0.1131 (13)
H4A 0.1147 0.6093 0.0658 0.170*
H4B −0.0361 0.4273 0.0544 0.170*
H4C 0.0537 0.6167 0.0375 0.170*
C5 0.3390 (5) 0.2040 (5) 0.06392 (4) 0.0652 (8)
H5 0.2139 0.1032 0.0643 0.078*
C6 0.5406 (6) 0.0737 (6) 0.05665 (6) 0.0915 (10)
H6A 0.5139 0.0013 0.0409 0.110*
H6B 0.6630 0.1732 0.0544 0.110*
C7 0.6000 (9) −0.0961 (7) 0.07594 (8) 0.1415 (18)
H7A 0.4867 −0.2075 0.0765 0.170*
H7B 0.7363 −0.1666 0.0712 0.170*
C8 0.6254 (10) 0.0031 (7) 0.10136 (8) 0.147 (2)
H8A 0.6529 −0.1123 0.1134 0.177*
H8B 0.7506 0.1011 0.1014 0.177*
C9 0.4288 (10) 0.1250 (8) 0.10869 (7) 0.1370 (18)
H9A 0.4537 0.1940 0.1247 0.164*
H9B 0.3070 0.0240 0.1105 0.164*
C10 0.3709 (7) 0.2961 (6) 0.09005 (5) 0.0976 (12)
H10A 0.4863 0.4054 0.0896 0.117*
H10B 0.2369 0.3685 0.0952 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0833 (6) 0.0833 (6) 0.0798 (7) −0.0262 (6) −0.0097 (5) 0.0097 (5)
N1 0.0914 (18) 0.0764 (16) 0.0526 (12) −0.0234 (13) −0.0101 (12) 0.0110 (12)
C1 0.0661 (15) 0.0661 (15) 0.063 (2) −0.0067 (19) −0.0152 (14) 0.0152 (14)
C2 0.095 (2) 0.099 (3) 0.0666 (16) −0.037 (2) −0.0083 (16) 0.0109 (16)
C3 0.086 (2) 0.0616 (18) 0.0614 (16) −0.0014 (16) −0.0048 (15) 0.0017 (13)
C4 0.121 (3) 0.091 (3) 0.128 (3) 0.026 (3) −0.024 (3) −0.017 (2)
C5 0.081 (2) 0.0624 (16) 0.0520 (14) −0.0071 (15) 0.0022 (14) 0.0016 (13)
C6 0.109 (3) 0.087 (2) 0.079 (2) 0.027 (2) −0.0062 (19) −0.0082 (18)
C7 0.181 (5) 0.087 (3) 0.157 (4) 0.048 (3) −0.061 (4) −0.011 (3)
C8 0.238 (7) 0.094 (3) 0.110 (3) 0.014 (4) −0.088 (4) 0.021 (2)
C9 0.219 (6) 0.124 (4) 0.068 (2) −0.022 (4) −0.019 (3) 0.024 (2)
C10 0.144 (4) 0.094 (2) 0.0548 (16) 0.008 (2) 0.0080 (19) −0.0014 (17)

Geometric parameters (Å, º)

S1—C1 1.677 (3) C3—H3 0.9800
N1—C1 1.349 (3) C4—H4A 0.9600
N1—C2 1.458 (4) C4—H4B 0.9600
N1—C3 1.461 (4) C4—H4C 0.9600
C2—C2i 1.506 (4) C5—H5 0.9800
C3—C4 1.519 (5) C6—H6A 0.9700
C3—C5 1.527 (4) C6—H6B 0.9700
C5—C6 1.516 (5) C7—H7A 0.9700
C5—C10 1.526 (4) C7—H7B 0.9700
C6—C7 1.510 (6) C8—H8A 0.9700
C7—C8 1.503 (6) C8—H8B 0.9700
C8—C9 1.465 (8) C9—H9A 0.9700
C9—C10 1.490 (6) C9—H9B 0.9700
C2—H2A 0.9700 C10—H10A 0.9700
C2—H2B 0.9700 C10—H10B 0.9700
C1—N1—C2 111.6 (2) H4A—C4—H4C 109.00
C1—N1—C3 124.8 (2) H4B—C4—H4C 109.00
C2—N1—C3 122.0 (2) C3—C5—H5 108.00
S1—C1—N1 125.87 (13) C6—C5—H5 108.00
S1—C1—N1i 125.87 (13) C10—C5—H5 108.00
N1—C1—N1i 108.3 (2) C5—C6—H6A 109.00
N1—C2—C2i 102.6 (3) C5—C6—H6B 109.00
N1—C3—C4 110.0 (3) C7—C6—H6A 109.00
N1—C3—C5 110.4 (2) C7—C6—H6B 109.00
C4—C3—C5 115.1 (3) H6A—C6—H6B 108.00
C3—C5—C6 112.2 (2) C6—C7—H7A 109.00
C3—C5—C10 111.5 (3) C6—C7—H7B 109.00
C6—C5—C10 109.1 (3) C8—C7—H7A 109.00
C5—C6—C7 112.2 (3) C8—C7—H7B 109.00
C6—C7—C8 111.9 (3) H7A—C7—H7B 108.00
C7—C8—C9 111.4 (4) C7—C8—H8A 109.00
C8—C9—C10 111.6 (4) C7—C8—H8B 109.00
C5—C10—C9 113.1 (3) C9—C8—H8A 109.00
N1—C2—H2A 111.00 C9—C8—H8B 109.00
N1—C2—H2B 111.00 H8A—C8—H8B 108.00
H2A—C2—H2B 109.00 C8—C9—H9A 109.00
C2i—C2—H2A 111.00 C8—C9—H9B 109.00
C2i—C2—H2B 111.00 C10—C9—H9A 109.00
N1—C3—H3 107.00 C10—C9—H9B 109.00
C4—C3—H3 107.00 H9A—C9—H9B 108.00
C5—C3—H3 107.00 C5—C10—H10A 109.00
C3—C4—H4A 109.00 C5—C10—H10B 109.00
C3—C4—H4B 109.00 C9—C10—H10A 109.00
C3—C4—H4C 109.00 C9—C10—H10B 109.00
H4A—C4—H4B 109.00 H10A—C10—H10B 108.00
C2—N1—C1—S1 173.7 (2) N1—C3—C5—C10 177.2 (3)
C2—N1—C1—N1i −6.3 (3) C4—C3—C5—C6 179.8 (3)
C3—N1—C1—S1 8.2 (4) C4—C3—C5—C10 −57.6 (4)
C3—N1—C1—N1i −171.8 (2) C3—C5—C6—C7 176.4 (3)
C1—N1—C2—C2i 15.4 (3) C10—C5—C6—C7 52.4 (4)
C3—N1—C2—C2i −178.6 (3) C3—C5—C10—C9 −178.1 (4)
C1—N1—C3—C4 102.2 (3) C6—C5—C10—C9 −53.7 (4)
C1—N1—C3—C5 −129.7 (3) C5—C6—C7—C8 −54.2 (5)
C2—N1—C3—C4 −61.9 (4) C6—C7—C8—C9 55.0 (5)
C2—N1—C3—C5 66.2 (3) C7—C8—C9—C10 −55.6 (5)
N1—C2—C2i—N1i −17.5 (3) C8—C9—C10—C5 56.3 (5)
N1—C3—C5—C6 54.5 (3)

Symmetry code: (i) y, x, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···S1 0.98 2.65 3.174 (3) 114

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6637).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Kazak, C., Yilmaz, V. T., Servi, S., Koca, M. & Heinemann, F. W. (2005). Acta Cryst. C61, o348–o350. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812006150/hb6637sup1.cif

e-68-0o743-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812006150/hb6637Isup2.hkl

e-68-0o743-Isup2.hkl (120.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812006150/hb6637Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES