Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 17;68(Pt 3):o745. doi: 10.1107/S1600536812005892

dl-Methyl 4-(4-meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

Jing-Min Zhao a,*
PMCID: PMC3295513  PMID: 22412624

Abstract

In the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation. The N atom and the sp 3 C atom deviate in the same direction from the mean plane of the other four C atoms, by 0.269 (6) and 0.111 (6) Å, respectively. This mean plane is inclined to the 4-methoxy­phenyl ring by 87.3 (5)°. The cyclohexenone ring has a sofa conformation with the C atom bearing the methyl groups deviating from the mean plane through the other five C atoms by 0.628 (6) Å. There is a short C—H⋯O hydrogen bond in the molecule. In the crystal, molecules are linked by an N—H⋯O hydrogen bond to form chains propagating along the c-axis direction.

Related literature  

For related structures and hydrogen-bond definition, see: Yang et al. (2010). For the syntheis method, see: Tamaddon et al. (2010); Yang et al. (2011). For related literature about the biological activity of 1,4-dihydropyridines and their derivatives, see: Davies et al. (2005); Rose & Draeger (1992); Warrior et al. (2005).graphic file with name e-68-0o745-scheme1.jpg

Experimental  

Crystal data  

  • C21H25NO4

  • M r = 355.42

  • Tetragonal, Inline graphic

  • a = 16.058 (2) Å

  • c = 14.343 (3) Å

  • V = 3698.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection  

  • Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968). T min = 0.983, T max = 0.991

  • 6166 measured reflections

  • 3353 independent reflections

  • 1856 reflections with I > 2σ(I)

  • R int = 0.069

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.161

  • S = 1.01

  • 3353 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005892/ld2046sup1.cif

e-68-0o745-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005892/ld2046Isup2.hkl

e-68-0o745-Isup2.hkl (164.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005892/ld2046Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812005892/ld2046Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O1i 0.86 2.02 2.868 (4) 169
C12—H12A⋯O3 0.96 2.17 2.895 (6) 131

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

1,4-Dihydropyridines and their derivatives are an important class of pharmaceutical compounds with a broad spectrum of biological activities. For example, they have calcium modulatory properties (Rose & Draeger 1992), antibacterial (Davies et al. 2005), fungicidal (Warrior et al. 2005), antioxidant activities (Yang et al. 2011) etc. Therefore, significant interest has been attracted to find out convenient and facile approaches for the synthesis of 1,4-dihydropyridines. In view of the exhibited biological activitiy, precise single-crystal structure determinations of these derivatives are expected to provide insights in their design and function.

Experimental

The title compound was obtained according to the reported method (Tamaddon et al., 2010). A mixture of 4-Methoxybenzaldehyde (2 mmol), methyl acetoacetate (2 mmol), 5,5-dimethylcyclohexane-1,3-dione (2 mmol) and NH4HCO3 (2 mmol) was stirred in water (2 ml) under reflux. After completion of the reaction (TLC monitoring), the mixture was diluted with cold water (20 ml) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. IR (KBr) v/cm-1: 3181, 3067, 2960, 1703, 1604; 1H NMR (300 MHz, DMSO-d6) δ/p.p.m.: 9.07 (s, 1H, NH), 7.04(d, 2H, ArH, J = 8.4 Hz), 6.74 (d, 2H, ArH, J = 8.4 Hz), 4.80 (s, 1H, H4), 3.67, 3.53 (2 s, 6H, 2OCH3), 1.92–2.51 (m, 7H, cyclohexaneone), 1.00, 0.84 (2 s, 6H, 2CH3); MS (ESI) m/z: 378.2 [M+Na]+, 394.2 [M+K]+

Refinement

All H atoms were located in a difference map and refined isotropically. The N—H distance was constrained to 0.86 Å. All other H atoms were positioned geometrically and treated as riding, with C—H distances in the range 0.93–0.96 Å, and Uiso(H) = 1.2 or 1.5 times Ueq(C). The methyl groups were allowed to rotate during the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C21H25NO4 Dx = 1.277 Mg m3
Mr = 355.42 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421c Cell parameters from 25 reflections
Hall symbol: P -4 2n θ = 9–12°
a = 16.058 (2) Å µ = 0.09 mm1
c = 14.343 (3) Å T = 293 K
V = 3698.5 (11) Å3 Block, light yellow
Z = 8 0.20 × 0.10 × 0.10 mm
F(000) = 1520

Data collection

Nonius CAD-4 diffractometer 1856 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.069
Graphite monochromator θmax = 25.4°, θmin = 1.8°
ω/2θ scans h = 0→19
Absorption correction: ψ scan For Semi-empirical (using intensity measurements) absorption, see: (North et al., 1968). k = −10→19
Tmin = 0.983, Tmax = 0.991 l = 0→17
6166 measured reflections 3 standard reflections every 200 reflections
3353 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2] where P = (Fo2 + 2Fc2)/3
3353 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.4727 (3) 0.8718 (2) 0.5450 (2) 0.0371 (11)
H0A 0.4565 0.8757 0.6020 0.044*
O1 0.4081 (2) 0.9125 (2) 0.2288 (2) 0.0550 (10)
C1 0.3498 (3) 0.9515 (3) 0.5073 (3) 0.0404 (13)
H1A 0.3695 1.0068 0.5234 0.049*
H1B 0.3265 0.9267 0.5631 0.049*
O2 0.3890 (3) 0.5017 (2) 0.2656 (3) 0.0583 (10)
C2 0.2815 (3) 0.9593 (3) 0.4341 (3) 0.0344 (12)
O3 0.6966 (2) 0.7414 (3) 0.4707 (3) 0.0709 (13)
C3 0.3222 (3) 0.9807 (3) 0.3409 (3) 0.0406 (13)
H3A 0.2799 0.9793 0.2926 0.049*
H3B 0.3435 1.0371 0.3441 0.049*
O4 0.6735 (2) 0.7892 (2) 0.3268 (2) 0.0474 (10)
C4 0.3928 (3) 0.9230 (3) 0.3128 (3) 0.0357 (13)
C5 0.4399 (3) 0.8842 (3) 0.3850 (3) 0.0313 (12)
C6 0.4217 (3) 0.9006 (3) 0.4758 (3) 0.0339 (12)
C7 0.5083 (3) 0.8241 (3) 0.3582 (3) 0.0353 (12)
H7A 0.5378 0.8467 0.3040 0.042*
C8 0.5700 (3) 0.8157 (3) 0.4383 (3) 0.0331 (12)
C9 0.5500 (3) 0.8365 (3) 0.5264 (3) 0.0343 (12)
C10 0.2205 (3) 1.0282 (3) 0.4621 (4) 0.0581 (16)
H10A 0.1952 1.0145 0.5207 0.087*
H10B 0.1781 1.0334 0.4152 0.087*
H10C 0.2499 1.0800 0.4678 0.087*
C11 0.2338 (4) 0.8785 (3) 0.4250 (4) 0.0589 (16)
H11A 0.2715 0.8346 0.4079 0.088*
H11B 0.1918 0.8843 0.3779 0.088*
H11C 0.2080 0.8652 0.4835 0.088*
C12 0.6027 (3) 0.8290 (3) 0.6124 (3) 0.0445 (14)
H12A 0.6556 0.8053 0.5962 0.067*
H12B 0.5752 0.7938 0.6568 0.067*
H12C 0.6111 0.8832 0.6391 0.067*
C13 0.4736 (3) 0.7388 (3) 0.3322 (3) 0.0339 (12)
C14 0.4306 (3) 0.6932 (3) 0.3972 (3) 0.0427 (14)
H14A 0.4208 0.7165 0.4555 0.051*
C15 0.4013 (3) 0.6140 (3) 0.3791 (3) 0.0455 (14)
H15A 0.3729 0.5843 0.4248 0.055*
C16 0.4147 (3) 0.5795 (3) 0.2921 (3) 0.0402 (13)
C17 0.4554 (3) 0.6252 (3) 0.2247 (3) 0.0458 (14)
H17A 0.4630 0.6028 0.1655 0.055*
C18 0.4852 (3) 0.7040 (3) 0.2445 (3) 0.0442 (14)
H18A 0.5133 0.7339 0.1987 0.053*
C19 0.3666 (4) 0.4456 (3) 0.3372 (4) 0.0629 (18)
H19A 0.3491 0.3938 0.3101 0.094*
H19B 0.3217 0.4688 0.3730 0.094*
H19C 0.4137 0.4361 0.3770 0.094*
C20 0.6523 (3) 0.7785 (3) 0.4173 (3) 0.0394 (13)
C21 0.7556 (3) 0.7591 (4) 0.3010 (4) 0.0569 (16)
H21A 0.7653 0.7700 0.2361 0.085*
H21B 0.7589 0.7003 0.3123 0.085*
H21C 0.7970 0.7872 0.3376 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.046 (3) 0.048 (3) 0.0169 (19) 0.002 (2) −0.0004 (18) −0.0006 (19)
O1 0.081 (3) 0.063 (3) 0.0214 (16) 0.020 (2) 0.0000 (19) 0.0002 (18)
C1 0.049 (3) 0.041 (3) 0.032 (3) 0.008 (3) 0.005 (2) −0.006 (2)
O2 0.072 (3) 0.044 (2) 0.060 (2) −0.017 (2) −0.007 (2) −0.004 (2)
C2 0.040 (3) 0.027 (3) 0.036 (3) 0.005 (3) 0.000 (3) 0.003 (2)
O3 0.051 (3) 0.109 (4) 0.052 (2) 0.027 (2) −0.004 (2) 0.023 (3)
C3 0.045 (3) 0.033 (3) 0.043 (3) 0.005 (3) 0.000 (3) 0.008 (3)
O4 0.044 (2) 0.062 (2) 0.036 (2) 0.007 (2) 0.0093 (17) 0.0025 (19)
C4 0.045 (3) 0.034 (3) 0.027 (3) 0.000 (3) −0.001 (2) 0.001 (2)
C5 0.035 (3) 0.031 (3) 0.029 (3) 0.000 (2) −0.007 (2) 0.000 (2)
C6 0.045 (3) 0.032 (3) 0.025 (2) −0.003 (3) 0.001 (2) 0.002 (2)
C7 0.035 (3) 0.049 (3) 0.022 (2) 0.003 (3) −0.001 (2) 0.003 (2)
C8 0.040 (3) 0.035 (3) 0.024 (2) −0.003 (2) 0.001 (2) 0.002 (2)
C9 0.040 (3) 0.034 (3) 0.029 (3) −0.008 (3) −0.004 (2) 0.007 (2)
C10 0.054 (4) 0.066 (4) 0.054 (4) 0.013 (3) 0.007 (3) 0.008 (3)
C11 0.056 (4) 0.063 (4) 0.058 (4) −0.006 (3) −0.003 (3) 0.011 (3)
C12 0.050 (4) 0.053 (3) 0.031 (3) 0.001 (3) −0.007 (3) 0.002 (2)
C13 0.030 (3) 0.043 (3) 0.028 (3) 0.001 (2) 0.000 (2) −0.005 (2)
C14 0.053 (4) 0.047 (4) 0.028 (3) −0.004 (3) 0.004 (3) −0.004 (3)
C15 0.047 (4) 0.046 (4) 0.043 (3) −0.008 (3) 0.003 (3) 0.006 (3)
C16 0.039 (3) 0.036 (3) 0.046 (3) −0.005 (3) −0.012 (3) −0.004 (3)
C17 0.059 (4) 0.049 (4) 0.029 (3) −0.004 (3) −0.005 (3) −0.007 (3)
C18 0.049 (3) 0.058 (4) 0.026 (3) −0.004 (3) −0.004 (2) 0.001 (3)
C19 0.063 (4) 0.045 (4) 0.081 (4) −0.007 (3) 0.013 (4) 0.002 (3)
C20 0.042 (3) 0.043 (3) 0.033 (3) −0.006 (3) 0.002 (3) 0.000 (3)
C21 0.037 (3) 0.073 (4) 0.061 (4) 0.007 (3) 0.014 (3) 0.006 (3)

Geometric parameters (Å, º)

N—C6 1.368 (6) C9—C12 1.501 (6)
N—C9 1.389 (6) C10—H10A 0.9600
N—H0A 0.8600 C10—H10B 0.9600
O1—C4 1.240 (5) C10—H10C 0.9600
C1—C6 1.485 (7) C11—H11A 0.9600
C1—C2 1.523 (6) C11—H11B 0.9600
C1—H1A 0.9700 C11—H11C 0.9600
C1—H1B 0.9700 C12—H12A 0.9600
O2—C16 1.370 (6) C12—H12B 0.9600
O2—C19 1.412 (6) C12—H12C 0.9600
C2—C11 1.512 (7) C13—C14 1.371 (6)
C2—C3 1.528 (6) C13—C18 1.390 (6)
C2—C10 1.532 (6) C14—C15 1.380 (7)
O3—C20 1.203 (5) C14—H14A 0.9300
C3—C4 1.518 (6) C15—C16 1.382 (6)
C3—H3A 0.9700 C15—H15A 0.9300
C3—H3B 0.9700 C16—C17 1.379 (7)
O4—C20 1.352 (5) C17—C18 1.382 (7)
O4—C21 1.453 (5) C17—H17A 0.9300
C4—C5 1.427 (6) C18—H18A 0.9300
C5—C6 1.360 (6) C19—H19A 0.9600
C5—C7 1.512 (7) C19—H19B 0.9600
C7—C8 1.523 (6) C19—H19C 0.9600
C7—C13 1.524 (7) C21—H21A 0.9600
C7—H7A 0.9800 C21—H21B 0.9600
C8—C9 1.346 (6) C21—H21C 0.9600
C8—C20 1.482 (7)
C6—N—C9 122.2 (4) H10A—C10—H10C 109.5
C6—N—H0A 118.9 H10B—C10—H10C 109.5
C9—N—H0A 118.9 C2—C11—H11A 109.5
C6—C1—C2 113.3 (4) C2—C11—H11B 109.5
C6—C1—H1A 108.9 H11A—C11—H11B 109.5
C2—C1—H1A 108.9 C2—C11—H11C 109.5
C6—C1—H1B 108.9 H11A—C11—H11C 109.5
C2—C1—H1B 108.9 H11B—C11—H11C 109.5
H1A—C1—H1B 107.7 C9—C12—H12A 109.5
C16—O2—C19 117.2 (4) C9—C12—H12B 109.5
C11—C2—C1 110.7 (4) H12A—C12—H12B 109.5
C11—C2—C3 109.5 (4) C9—C12—H12C 109.5
C1—C2—C3 108.2 (4) H12A—C12—H12C 109.5
C11—C2—C10 108.6 (4) H12B—C12—H12C 109.5
C1—C2—C10 109.9 (4) C14—C13—C18 117.9 (5)
C3—C2—C10 109.9 (4) C14—C13—C7 119.8 (4)
C4—C3—C2 114.5 (4) C18—C13—C7 122.2 (4)
C4—C3—H3A 108.6 C13—C14—C15 122.4 (5)
C2—C3—H3A 108.6 C13—C14—H14A 118.8
C4—C3—H3B 108.6 C15—C14—H14A 118.8
C2—C3—H3B 108.6 C14—C15—C16 119.1 (5)
H3A—C3—H3B 107.6 C14—C15—H15A 120.4
C20—O4—C21 115.5 (4) C16—C15—H15A 120.4
O1—C4—C5 122.7 (5) O2—C16—C17 115.7 (5)
O1—C4—C3 119.3 (4) O2—C16—C15 124.7 (5)
C5—C4—C3 118.0 (4) C17—C16—C15 119.5 (5)
C6—C5—C4 119.8 (4) C18—C17—C16 120.5 (5)
C6—C5—C7 121.6 (4) C18—C17—H17A 119.7
C4—C5—C7 118.6 (4) C16—C17—H17A 119.7
C5—C6—N 120.0 (4) C17—C18—C13 120.5 (5)
C5—C6—C1 124.4 (4) C17—C18—H18A 119.8
N—C6—C1 115.5 (4) C13—C18—H18A 119.8
C5—C7—C8 109.7 (4) O2—C19—H19A 109.5
C5—C7—C13 111.8 (4) O2—C19—H19B 109.5
C8—C7—C13 110.0 (4) H19A—C19—H19B 109.5
C5—C7—H7A 108.4 O2—C19—H19C 109.5
C8—C7—H7A 108.4 H19A—C19—H19C 109.5
C13—C7—H7A 108.4 H19B—C19—H19C 109.5
C9—C8—C20 120.2 (4) O3—C20—O4 121.7 (5)
C9—C8—C7 122.1 (4) O3—C20—C8 126.7 (4)
C20—C8—C7 117.6 (4) O4—C20—C8 111.5 (4)
C8—C9—N 119.6 (4) O4—C21—H21A 109.5
C8—C9—C12 128.1 (5) O4—C21—H21B 109.5
N—C9—C12 112.3 (4) H21A—C21—H21B 109.5
C2—C10—H10A 109.5 O4—C21—H21C 109.5
C2—C10—H10B 109.5 H21A—C21—H21C 109.5
H10A—C10—H10B 109.5 H21B—C21—H21C 109.5
C2—C10—H10C 109.5
C6—C1—C2—C11 73.4 (6) C20—C8—C9—N 179.7 (4)
C6—C1—C2—C3 −46.7 (5) C7—C8—C9—N −4.2 (7)
C6—C1—C2—C10 −166.7 (4) C20—C8—C9—C12 1.6 (8)
C11—C2—C3—C4 −69.0 (5) C7—C8—C9—C12 177.7 (5)
C1—C2—C3—C4 51.8 (5) C6—N—C9—C8 −12.4 (7)
C10—C2—C3—C4 171.8 (4) C6—N—C9—C12 166.0 (4)
C2—C3—C4—O1 152.0 (5) C5—C7—C13—C14 −61.7 (6)
C2—C3—C4—C5 −29.1 (6) C8—C7—C13—C14 60.4 (6)
O1—C4—C5—C6 177.8 (5) C5—C7—C13—C18 119.6 (5)
C3—C4—C5—C6 −1.0 (7) C8—C7—C13—C18 −118.3 (5)
O1—C4—C5—C7 −3.5 (8) C18—C13—C14—C15 2.0 (8)
C3—C4—C5—C7 177.7 (4) C7—C13—C14—C15 −176.8 (5)
C4—C5—C6—N −172.0 (4) C13—C14—C15—C16 −0.8 (8)
C7—C5—C6—N 9.3 (7) C19—O2—C16—C17 164.3 (5)
C4—C5—C6—C1 5.6 (8) C19—O2—C16—C15 −16.6 (8)
C7—C5—C6—C1 −173.0 (5) C14—C15—C16—O2 179.8 (5)
C9—N—C6—C5 9.8 (7) C14—C15—C16—C17 −1.2 (8)
C9—N—C6—C1 −168.1 (4) O2—C16—C17—C18 −178.9 (5)
C2—C1—C6—C5 20.1 (7) C15—C16—C17—C18 2.0 (8)
C2—C1—C6—N −162.1 (4) C16—C17—C18—C13 −0.8 (8)
C6—C5—C7—C8 −22.5 (6) C14—C13—C18—C17 −1.2 (8)
C4—C5—C7—C8 158.8 (4) C7—C13—C18—C17 177.6 (5)
C6—C5—C7—C13 99.8 (5) C21—O4—C20—O3 −4.9 (7)
C4—C5—C7—C13 −78.9 (5) C21—O4—C20—C8 176.4 (4)
C5—C7—C8—C9 20.0 (6) C9—C8—C20—O3 23.6 (8)
C13—C7—C8—C9 −103.3 (5) C7—C8—C20—O3 −152.7 (5)
C5—C7—C8—C20 −163.7 (4) C9—C8—C20—O4 −157.8 (5)
C13—C7—C8—C20 72.9 (5) C7—C8—C20—O4 25.9 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N—H0A···O1i 0.86 2.02 2.868 (4) 169
C12—H12A···O3 0.96 2.17 2.895 (6) 131

Symmetry code: (i) y−1/2, x+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2046).

References

  1. Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6911442.
  2. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Rose, U. & Draeger, M. (1992). J. Med. Chem. 35, 2238–2243. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tamaddon, F., Razmi, A. & Jafari, A. (2010). Tetrahedron Lett. 51, 1187–1189.
  8. Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.
  9. Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, pp. 327–337.
  10. Yang, X.-H., Zhou, Y.-H., Zhang, M. & Song, X. (2010). Acta Cryst. E66, o2767. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812005892/ld2046sup1.cif

e-68-0o745-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812005892/ld2046Isup2.hkl

e-68-0o745-Isup2.hkl (164.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812005892/ld2046Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812005892/ld2046Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES