Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jul;78(1):221–227. doi: 10.1172/JCI112555

Abnormal vitamin D metabolism, intestinal calcium transport, and bone calcium status in the spontaneously hypertensive rat compared with its genetic control.

P A Lucas, R C Brown, T Drüeke, B Lacour, J A Metz, D A McCarron
PMCID: PMC329553  PMID: 3755141

Abstract

Abnormalities of intestinal calcium absorption and the vitamin D axis in the spontaneously hypertensive rat (SHR) are controversial. The present report documents a reduction in circulating 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the 12-14-wk-old male SHR with evidence of its functional significance. Both plasma 1,25(OH)2D3 and mucosa-to-serosa duodenal calcium flux (Jm-s), measured by the Ussing chamber, were significantly lower (approximately 60% of value in Wistar-Kyoto rats [WKY]) in SHR on both normal (1%) and low (0.1%) calcium diets than in corresponding control WKY. Low dietary calcium increased both 1,25(OH)2D3 and Jm-s by approximately 80% in SHR and WKY, with levels of both parameters rising in the SHR to levels found in the WKY under baseline conditions. The latter fact suggests the improbability of intestinal resistance to the action of 1,25(OH)2D3 in the SHR. Plasma 25-hydroxyvitamin D3 (25(OH)D3) was not significantly different between the strains. Intraperitoneal 1,25(OH)2D3 increased Jm-s in 12-14-wk-old SHR to levels observed in equivalent WKY. In 20-24-wk-old SHR, calcium deprivation was associated with significantly reduced Jm-s compared with equivalent WKY. Bone density and bone calcium content in 20-30-wk-old SHR were significantly reduced. In summary, we provide evidence that the SHR was unable to sustain appropriate circulating levels of 1,25(OH)2D3, an impairment which resulted in reduced duodenal calcium absorption.

Full text

PDF
221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armbrecht H. J., Forte L. R., Halloran B. P. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984 Mar;246(3 Pt 1):E266–E270. doi: 10.1152/ajpendo.1984.246.3.E266. [DOI] [PubMed] [Google Scholar]
  2. Beirewaltes W. H., Arendshorst W. J. Renal function of conscious spontaneously hypertensive rats. Circ Res. 1978 May;42(5):721–726. doi: 10.1161/01.res.42.5.721. [DOI] [PubMed] [Google Scholar]
  3. Bikle D. D., Rasmussen H. The ionic control of 1,25-dihydroxyvitamin D3 production in isolated chick renal tubules. J Clin Invest. 1975 Feb;55(2):292–298. doi: 10.1172/JCI107932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bindels R. J., Geertsen J. A., Van Os C. H. Increased transport of inorganic phosphate in renal brush borders of spontaneously hypertensive rats. Am J Physiol. 1986 Mar;250(3 Pt 2):F470–F475. doi: 10.1152/ajprenal.1986.250.3.F470. [DOI] [PubMed] [Google Scholar]
  5. Bruschi G., Bruschi M. E., Caroppo M., Orlandini G., Spaggiari M., Cavatorta A. Cytoplasmic free [Ca2+] is increased in the platelets of spontaneously hypertensive rats and essential hypertensive patients. Clin Sci (Lond) 1985 Feb;68(2):179–184. doi: 10.1042/cs0680179. [DOI] [PubMed] [Google Scholar]
  6. Devynck M. A., Pernollet M. G., Nunez A. M., Meyer P. Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats. Hypertension. 1981 Jul-Aug;3(4):397–403. doi: 10.1161/01.hyp.3.4.397. [DOI] [PubMed] [Google Scholar]
  7. Donowitz M. Ca2+ in the control of active intestinal Na and Cl transport: involvement in neurohumoral action. Am J Physiol. 1983 Aug;245(2):G165–G177. doi: 10.1152/ajpgi.1983.245.2.G165. [DOI] [PubMed] [Google Scholar]
  8. Favus M. J., Angeid-Backman E., Breyer M. D., Coe F. L. Effects of trifluoperazine, ouabain, and ethacrynic acid on intestinal calcium transport. Am J Physiol. 1983 Feb;244(2):G111–G115. doi: 10.1152/ajpgi.1983.244.2.G111. [DOI] [PubMed] [Google Scholar]
  9. Favus M. J., Langman C. B. Effects of 1,25-dihydroxyvitamin D3 on colonic calcium transport in vitamin D-deficient and normal rats. Am J Physiol. 1984 Mar;246(3 Pt 1):G268–G273. doi: 10.1152/ajpgi.1984.246.3.G268. [DOI] [PubMed] [Google Scholar]
  10. Frolik C. A., DeLuca H. F. The stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Clin Invest. 1973 Mar;52(3):543–548. doi: 10.1172/JCI107214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hefti E., Trechsel U., Fleisch H., Bonjour J. P. Nature of calcemic effect of 1,25-dihydroxyvitamin D3 in experimental hypoparathyroidism. Am J Physiol. 1983 Apr;244(4):E313–E316. doi: 10.1152/ajpendo.1983.244.4.E313. [DOI] [PubMed] [Google Scholar]
  12. Hsu C. H., Chen P. S., Caldwell R. M. Renal phosphate excretion in spontaneously hypertensive and normotensive Wistar Kyoto rats. Kidney Int. 1984 May;25(5):785–795. doi: 10.1038/ki.1984.91. [DOI] [PubMed] [Google Scholar]
  13. Izawa Y., Sagara K., Kadota T., Makita T. Bone disorders in spontaneously hypertensive rat. Calcif Tissue Int. 1985 Dec;37(6):605–607. doi: 10.1007/BF02554916. [DOI] [PubMed] [Google Scholar]
  14. Kao P. C., Heser D. W. Simultaneous determination of 25-hydroxy- and 1,25-dihydroxyvitamin D from a single sample by dual-cartridge extraction. Clin Chem. 1984 Jan;30(1):56–61. [PubMed] [Google Scholar]
  15. Kowarski S., Cowen L. A., Schachter D. Decreased content of integral membrane calcium-binding protein (IMCAL) in tissues of the spontaneously hypertensive rat. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1097–1100. doi: 10.1073/pnas.83.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kowarski S., Schachter D. Intestinal membrane calcium-binding protein. Vitamin D-dependent membrane component of the intestinal calcium transport mechanism. J Biol Chem. 1980 Nov 25;255(22):10834–10840. [PubMed] [Google Scholar]
  17. Lau K., Zikos D., Spirnak J., Eby B. Evidence for an intestinal mechanism in hypercalciuria of spontaneously hypertensive rats. Am J Physiol. 1984 Nov;247(5 Pt 1):E625–E633. doi: 10.1152/ajpendo.1984.247.5.E625. [DOI] [PubMed] [Google Scholar]
  18. Lee D. B., Walling M. M., Levine B. S., Gafter U., Silis V., Hodsman A., Coburn J. W. Intestinal and metabolic effect of 1,25-dihydroxyvitamin D3 in normal adult rat. Am J Physiol. 1981 Jan;240(1):G90–G96. doi: 10.1152/ajpgi.1981.240.1.G90. [DOI] [PubMed] [Google Scholar]
  19. McCarron D. A. Is calcium more important than sodium in the pathogenesis of essential hypertension? Hypertension. 1985 Jul-Aug;7(4):607–627. doi: 10.1161/01.hyp.7.4.607. [DOI] [PubMed] [Google Scholar]
  20. McCarron D. A., Lucas P. A., Shneidman R. J., LaCour B., Drüeke T. Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes. J Clin Invest. 1985 Sep;76(3):1147–1154. doi: 10.1172/JCI112070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Noon J. P., Rice P. J., Baldessarini R. J. Calcium leakage as a cause of the high resting tension in vascular smooth muscle from the spontaneously hypertensive rat. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1605–1607. doi: 10.1073/pnas.75.3.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pansu D., Bellaton C., Bronner F. Developmental changes in the mechanisms of duodenal calcium transport in the rat. Am J Physiol. 1983 Jan;244(1):G20–G26. doi: 10.1152/ajpgi.1983.244.1.G20. [DOI] [PubMed] [Google Scholar]
  23. Peterlik M., Wasserman R. H. Effect of vitamin D on transepithelial phosphate transport in chick intestine. Am J Physiol. 1978 Apr;234(4):E379–E388. doi: 10.1152/ajpendo.1978.234.4.E379. [DOI] [PubMed] [Google Scholar]
  24. Postnov Y. V., Orlov S. N. Features of intracellular calcium distribution in the adipose tissue of spontaneously hypertensive rats (SHR). Experientia. 1979 Nov 15;35(11):1480–1481. doi: 10.1007/BF01962797. [DOI] [PubMed] [Google Scholar]
  25. Postnov Y. V., Orlov S. N., Pokudin N. I. Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pflugers Arch. 1979 Mar 16;379(2):191–195. doi: 10.1007/BF00586947. [DOI] [PubMed] [Google Scholar]
  26. Rader J. I., Baylink D. J., Hughes M. R., Safilian E. F., Haussler M. R. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979 Feb;236(2):E118–E122. doi: 10.1152/ajpendo.1979.236.2.E118. [DOI] [PubMed] [Google Scholar]
  27. Resnick L. M., Laragh J. H., Sealey J. E., Alderman M. H. Divalent cations in essential hypertension. Relations between serum ionized calcium, magnesium, and plasma renin activity. N Engl J Med. 1983 Oct 13;309(15):888–891. doi: 10.1056/NEJM198310133091504. [DOI] [PubMed] [Google Scholar]
  28. Rizzoli R., Fleisch H., Bonjour J. P. Effect of thyroparathyroidectomy of calcium metabolism in rats: role of 1,25-dihydroxyvitamin D3. Am J Physiol. 1977 Sep;233(3):E160–E164. doi: 10.1152/ajpendo.1977.233.3.E160. [DOI] [PubMed] [Google Scholar]
  29. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanchez T. V., Myers R. C., Bond J. T., Mayor G. H. Bone mineral analysis of the rat femur by direct photon absorptiometry. Calcif Tissue Int. 1981;33(6):587–590. doi: 10.1007/BF02409496. [DOI] [PubMed] [Google Scholar]
  31. Schedl H. P., Miller D. L., Pape J. M., Horst R. L., Wilson H. D. Calcium and sodium transport and vitamin D metabolism in the spontaneously hypertensive rat. J Clin Invest. 1984 Apr;73(4):980–986. doi: 10.1172/JCI111323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stern N., Lee D. B., Silis V., Beck F. W., Deftos L., Manolagas S. C., Sowers J. R. Effects of high calcium intake on blood pressure and calcium metabolism in young SHR. Hypertension. 1984 Sep-Oct;6(5):639–646. doi: 10.1161/01.hyp.6.5.639. [DOI] [PubMed] [Google Scholar]
  33. Swaminathan R., Sommerville B. A., Care A. D. The effect of dietary calcium on the activity of 25-hydroxycholecalciferol-1-hydroxylase and Ca absorption in vitamin D-replete chicks. Br J Nutr. 1977 Jul;38(1):47–54. doi: 10.1079/bjn19770060. [DOI] [PubMed] [Google Scholar]
  34. Tanaka Y., Deluca H. F. Role of 1,25-dihydroxyvitamin D3 in maintaining serum phosphorus and curing rickets. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1040–1044. doi: 10.1073/pnas.71.4.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Toraason M. A., Wright G. L. Transport of calcium by duodenum of spontaneously hypertensive rat. Am J Physiol. 1981 Oct;241(4):G344–G347. doi: 10.1152/ajpgi.1981.241.4.G344. [DOI] [PubMed] [Google Scholar]
  36. Tröhler U., Bonjour J. P., Fleisch H. Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J Clin Invest. 1976 Feb;57(2):264–273. doi: 10.1172/JCI108277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Walling M. W., Hartenbower D. L., Coburn J. W., Norman A. W. Effects of 1 alpha,25-, 24R,25-, and 1 alpha,24R,25-hydroxylated metabolites of vitamin D3 on calcium and phosphate absorption by duodenum from intact and nephrectomized rats. Arch Biochem Biophys. 1977 Jul;182(1):251–257. doi: 10.1016/0003-9861(77)90305-8. [DOI] [PubMed] [Google Scholar]
  38. Walling M. W., Kimberg D. V. Active secretion of calcium by adult rat ileum and jejunum in vitro. Am J Physiol. 1973 Aug;225(2):415–422. doi: 10.1152/ajplegacy.1973.225.2.415. [DOI] [PubMed] [Google Scholar]
  39. Walling M. W., Kimberg D. V. Effects of 1alpha,25-dihydroxyvitamin D3 and Solanum glaucophyllum on intestinal calcium and phosphate transport and on plasma Ca, Mg and P levels in the rat. Endocrinology. 1975 Dec;97(6):1567–1576. doi: 10.1210/endo-97-6-1567. [DOI] [PubMed] [Google Scholar]
  40. Wright G. L., Rankin G. O. Concentrations of ionic and total calcium in plasma of four models of hypertension. Am J Physiol. 1982 Sep;243(3):H365–H370. doi: 10.1152/ajpheart.1982.243.3.H365. [DOI] [PubMed] [Google Scholar]
  41. Yamamoto M., Kawanobe Y., Takahashi H., Shimazawa E., Kimura S., Ogata E. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984 Aug;74(2):507–513. doi: 10.1172/JCI111448. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES