Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jul;78(1):228–240. doi: 10.1172/JCI112556

Increased left ventricular stiffness impairs filling in dogs with pulmonary emphysema in respiratory failure.

A Gomez, S Mink
PMCID: PMC329554  PMID: 3722377

Abstract

In a chronic canine model of pulmonary emphysema, we studied the interaction between left ventricular (LV) mechanics and pulmonary disease during severe hypoxemia. The hypoxemia was similar to that which may occur during a severe exacerbation of chronic obstructive lung disease. In six dogs with papain-induced emphysema and in seven dogs without emphysema, LV mechanics were examined when a hypoxic gas mixture was inspired to reduce PO2 to about 35 mmHg (hypoxic study) and during nonhypoxic conditions (room air study). In both groups, LV diastolic compliance was reduced during the hypoxic study by a similar amount. This finding could not be explained in terms of ventricular interdependence. Our analysis suggested that hypoxia decreased diastolic compliance (i.e., increased LV diastolic stiffness) by impairing LV relaxation. The primary effect of hypoxia was to decrease the extent to which LV relaxation occurred for a given end-diastolic pressure, while the rate of LV relaxation was decreased just slightly. This study indicates that severe hypoxemia because of respiratory failure may impair myocardial relaxation leading to a decrease in LV filling.

Full text

PDF
228

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Schwartz A. Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest. 1980 Jul;78(1 Suppl):123–139. doi: 10.1378/chest.78.1_supplement.123. [DOI] [PubMed] [Google Scholar]
  2. Barry W. H., Brooker J. Z., Alderman E. L., Harrison D. C. Changes in diastolic stiffness and tone of the left ventricle during angina pectoris. Circulation. 1974 Feb;49(2):255–263. doi: 10.1161/01.cir.49.2.255. [DOI] [PubMed] [Google Scholar]
  3. Benumof J. L., Wahrenbrock E. A. Blunted hypoxic pulmonary vasoconstriction by increased lung vascular pressures. J Appl Physiol. 1975 May;38(5):846–850. doi: 10.1152/jappl.1975.38.5.846. [DOI] [PubMed] [Google Scholar]
  4. Brutsaert D. L., Rademakers F. E., Sys S. U. Triple control of relaxation: implications in cardiac disease. Circulation. 1984 Jan;69(1):190–196. doi: 10.1161/01.cir.69.1.190. [DOI] [PubMed] [Google Scholar]
  5. COOK C. D., MEAD J., SCHREINER G. L., FRANK N. R., CRAIG J. M. Pulmonary mechanics during induced pulmonary edema in anesthetized dogs. J Appl Physiol. 1959 Mar;14(2):177–186. doi: 10.1152/jappl.1959.14.2.177. [DOI] [PubMed] [Google Scholar]
  6. Dawson C. A. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev. 1984 Apr;64(2):544–616. doi: 10.1152/physrev.1984.64.2.544. [DOI] [PubMed] [Google Scholar]
  7. Frist W. H., Palacios I., Powell W. J., Jr Effect of hypoxia on myocardial relaxation in isometric cat papillary muscle. J Clin Invest. 1978 May;61(5):1218–1224. doi: 10.1172/JCI109037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glantz S. A., Misbach G. A., Moores W. Y., Mathey D. G., Lekven J., Stowe D. F., Parmley W. W., Tyberg J. V. The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res. 1978 Mar;42(3):433–441. doi: 10.1161/01.res.42.3.433. [DOI] [PubMed] [Google Scholar]
  9. Glantz S. A., Parmley W. W. Factors which affect the diastolic pressure-volume curve. Circ Res. 1978 Feb;42(2):171–180. doi: 10.1161/01.res.42.2.171. [DOI] [PubMed] [Google Scholar]
  10. Grossman W., Barry W. H. Diastolic pressure-volume relations in the diseased heart. Fed Proc. 1980 Feb;39(2):148–155. [PubMed] [Google Scholar]
  11. Janicki J. S., Weber K. T. The pericardium and ventricular interaction, distensibility, and function. Am J Physiol. 1980 Apr;238(4):H494–H503. doi: 10.1152/ajpheart.1980.238.4.H494. [DOI] [PubMed] [Google Scholar]
  12. Jardin F., Gueret P., Prost J. F., Farcot J. C., Ozier Y., Bourdarias J. P. Two-dimensional echocardiographic assessment of left ventricular function in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1984 Jan;129(1):135–142. doi: 10.1164/arrd.1984.129.1.135. [DOI] [PubMed] [Google Scholar]
  13. KATZ A. M., KATZ L. N., WILLIAMS F. L. Registration of left ventricular volume curves in the dog with the systemic circulation intact. Circ Res. 1955 Nov;3(6):588–593. doi: 10.1161/01.res.3.6.588. [DOI] [PubMed] [Google Scholar]
  14. Kawakami Y., Kishi F., Yamamoto H., Miyamoto K. Relation of oxygen delivery, mixed venous oxygenation, and pulmonary hemodynamics to prognosis in chronic obstructive pulmonary disease. N Engl J Med. 1983 May 5;308(18):1045–1049. doi: 10.1056/NEJM198305053081801. [DOI] [PubMed] [Google Scholar]
  15. Kay H. R., Afshari M., Barash P., Webler W., Iskandrian A., Bemis C., Hakki A. H., Mundth E. D. Measurement of ejection fraction by thermal dilution techniques. J Surg Res. 1983 Apr;34(4):337–346. doi: 10.1016/0022-4804(83)90081-1. [DOI] [PubMed] [Google Scholar]
  16. Laks M. M., Garner D., Swan H. J. Volumes and compliances measured simultaneously in the right and left ventricles of the dog. Circ Res. 1967 May;20(5):565–569. doi: 10.1161/01.res.20.5.565. [DOI] [PubMed] [Google Scholar]
  17. Light R. B., Mink S. N., Wood L. D. Pathophysiology of gas exchange and pulmonary perfusion in pneumococcal lobar pneumonia in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1981 Mar;50(3):524–530. doi: 10.1152/jappl.1981.50.3.524. [DOI] [PubMed] [Google Scholar]
  18. Lipasti J. A., Nevalainen T. J., Alanen K. A., Tolvanen M. A. Anaerobic glycolysis and the development of ischaemic contracture in isolated rat heart. Cardiovasc Res. 1984 Mar;18(3):145–148. doi: 10.1093/cvr/18.3.145. [DOI] [PubMed] [Google Scholar]
  19. Mink S. N. Expiratory flow limitation and the response to breathing a helium-oxygen gas mixture in a canine model of pulmonary emphysema. J Clin Invest. 1984 May;73(5):1321–1334. doi: 10.1172/JCI111335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mink S. N., Gomez A., Whitley L., Coalson J. J. Hemodynamics in dogs with pulmonary hypertension due to emphysema. Lung. 1986;164(1):41–54. doi: 10.1007/BF02713628. [DOI] [PubMed] [Google Scholar]
  21. Mink S. N., Unruh H. W., Oppenheimer L. Vascular and interstitial mechanics in canine pulmonary emphysema. J Appl Physiol (1985) 1985 Dec;59(6):1704–1715. doi: 10.1152/jappl.1985.59.6.1704. [DOI] [PubMed] [Google Scholar]
  22. Momomura S., Bradley A. B., Grossman W. Left ventricular diastolic pressure-segment length relations and end-diastolic distensibility in dogs with coronary stenoses. An angina physiology model. Circ Res. 1984 Aug;55(2):203–214. doi: 10.1161/01.res.55.2.203. [DOI] [PubMed] [Google Scholar]
  23. Olsen C. O., Attarian D. E., Jones R. N., Hill R. C., Sink J. D., Lee K. L., Wechsler A. S. The coronary pressure-flow determinants left ventricular compliance in dogs. Circ Res. 1981 Oct;49(4):856–865. doi: 10.1161/01.res.49.4.856. [DOI] [PubMed] [Google Scholar]
  24. Paulus W. J., Grossman W., Serizawa T., Bourdillon P. D., Pasipoularides A., Mirsky I. Different effects of two types of ischemia on myocardial systolic and diastolic function. Am J Physiol. 1985 May;248(5 Pt 2):H719–H728. doi: 10.1152/ajpheart.1985.248.5.H719. [DOI] [PubMed] [Google Scholar]
  25. Paulus W. J., Serizawa T., Grossman W. Altered left ventricular diastolic properties during pacing-induced ischemia in dogs with coronary stenoses. Potentiation by caffeine. Circ Res. 1982 Feb;50(2):218–227. doi: 10.1161/01.res.50.2.218. [DOI] [PubMed] [Google Scholar]
  26. Pushpakom R., Hogg J. C., Woolcock A. J., Angus A. E., Macklem P. T., Thurlbeck W. M. Experimental papain-induced emphysema in dogs. Am Rev Respir Dis. 1970 Nov;102(5):778–789. doi: 10.1164/arrd.1970.102.5.778. [DOI] [PubMed] [Google Scholar]
  27. Raff G. L., Glantz S. A. Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ Res. 1981 Jun;48(6 Pt 1):813–824. doi: 10.1161/01.res.48.6.813. [DOI] [PubMed] [Google Scholar]
  28. Robotham J. L., Badke F. R., Kindred M. K., Beaton M. K. Regional left ventricular performance during normal and obstructed spontaneous respiration. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):569–577. doi: 10.1152/jappl.1983.55.2.569. [DOI] [PubMed] [Google Scholar]
  29. Serizawa T., Vogel W. M., Apstein C. S., Grossman W. Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia. Role of myocardial oxygen supply-demand imbalance. J Clin Invest. 1981 Jul;68(1):91–102. doi: 10.1172/JCI110258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sodums M. T., Badke F. R., Starling M. R., Little W. C., O'Rourke R. A. Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs. Circ Res. 1984 Jun;54(6):731–739. doi: 10.1161/01.res.54.6.731. [DOI] [PubMed] [Google Scholar]
  31. Swain J. L., Morris K. G., Bruno F. P., Cobb F. R. Comparison of multigated radionuclide angiography with ultrasonic sonomicrometry over a wide range of ventricular function in the conscious dog. Am J Cardiol. 1980 Dec 1;46(6):976–982. doi: 10.1016/0002-9149(80)90354-9. [DOI] [PubMed] [Google Scholar]
  32. Taylor R. R., Covell J. W., Sonnenblick E. H., Ross J., Jr Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol. 1967 Sep;213(3):711–718. doi: 10.1152/ajplegacy.1967.213.3.711. [DOI] [PubMed] [Google Scholar]
  33. Tyberg J. V., Yeatman L. A., Parmley W. W., Urschel C. W., Sonnenblick E. H. Effects of hypoxia on mechanics of cardiac contraction. Am J Physiol. 1970 Jun;218(6):1780–1788. doi: 10.1152/ajplegacy.1970.218.6.1780. [DOI] [PubMed] [Google Scholar]
  34. Vogel W. M., Apstein C. S., Briggs L. L., Gaasch W. H., Ahn J. Acute alterations in left ventricular diastolic chamber stiffness. Role of the "erectile" effect of coronary arterial pressure and flow in normal and damaged hearts. Circ Res. 1982 Oct;51(4):465–478. doi: 10.1161/01.res.51.4.465. [DOI] [PubMed] [Google Scholar]
  35. Weber K. T., Janicki J. S., Shroff S. G., Likoff M. J., St John Sutton M. G. The right ventricle: physiologic and pathophysiologic considerations. Crit Care Med. 1983 May;11(5):323–328. doi: 10.1097/00003246-198305000-00002. [DOI] [PubMed] [Google Scholar]
  36. Weisfeldt M. L., Armstrong P., Scully H. E., Sanders C. A., Daggett W. M. Incomplete relaxation between beats after myocardial hypoxia and ischemia. J Clin Invest. 1974 Jun;53(6):1626–1636. doi: 10.1172/JCI107713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weisfeldt M. L., Frederiksen J. W., Yin F. C., Weiss J. L. Evidence of incomplete left ventricular relaxation in the dog: prediction from the time constant for isovolumic pressure fall. J Clin Invest. 1978 Dec;62(6):1296–1302. doi: 10.1172/JCI109250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weiss J. L., Frederiksen J. W., Weisfeldt M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976 Sep;58(3):751–760. doi: 10.1172/JCI108522. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES