Abstract
Substance P (SP), neurotensin (NT), bombesin (BB), serotonin (5HT), and carbamylcholine (CCH) transiently increase electrogenic anion secretion in chinchilla and chicken ileum. SP and CCH also transiently inhibit amiloride-sensitive Na/H exchange in isolated chicken enterocytes. Loperamide (LP) inhibits the short-circuit current responses caused by SP, NT, and BB, but not those caused by CCH, 5HT, Ca ionophore, or cyclic nucleotides. Similarly, LP inhibits the effects of SP, but not those of CCH, on Na/H exchange. LP inhibition of the SP effects was further studied in isolated chicken enterocytes. CCH and SP transiently increased cytosolic Ca activity by 20-50 nmol/liter, but only the response to SP was inhibited by LP (10(-5) M) and by the absence of extracellular Ca. We conclude SP and CCH effects on intestinal electrolyte transport are mediated by increasing enterocyte Ca activity and LP specifically inhibits peptide hormone-activated Ca entry by an opiate receptor-independent mechanism.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn J., Chang E. B., Field M. Phorbol ester inhibition of Na-H exchange in rabbit proximal colon. Am J Physiol. 1985 Nov;249(5 Pt 1):C527–C530. doi: 10.1152/ajpcell.1985.249.5.C527. [DOI] [PubMed] [Google Scholar]
- Awouters F., Niemegeers C. J., Janssen P. A. Pharmacology of antidiarrheal drugs. Annu Rev Pharmacol Toxicol. 1983;23:279–301. doi: 10.1146/annurev.pa.23.040183.001431. [DOI] [PubMed] [Google Scholar]
- Awouters F., Niemegeers C. J., Kuyps J., Janssen P. A. Loperamide antagonism of castor oil-induced diarrhea in rats: a quantitative study. Arch Int Pharmacodyn Ther. 1975 Sep;217(1):29–37. [PubMed] [Google Scholar]
- Bortolotti M., Labò G. Clinical and manometric effects of nifedipine in patients with esophageal achalasia. Gastroenterology. 1981 Jan;80(1):39–44. [PubMed] [Google Scholar]
- Braunwald E. Mechanism of action of calcium-channel-blocking agents. N Engl J Med. 1982 Dec 23;307(26):1618–1627. doi: 10.1056/NEJM198212233072605. [DOI] [PubMed] [Google Scholar]
- Donowitz M., Levin S., Powers G., Elta G., Cohen P., Cheng H. Ca2+ channel blockers stimulate ileal and colonic water absorption. Gastroenterology. 1985 Oct;89(4):858–866. doi: 10.1016/0016-5085(85)90584-0. [DOI] [PubMed] [Google Scholar]
- Dubinsky W. P., Jr, Frizzell R. A. A novel effect of amiloride on H+-dependent Na+ transport. Am J Physiol. 1983 Jul;245(1):C157–C159. doi: 10.1152/ajpcell.1983.245.1.C157. [DOI] [PubMed] [Google Scholar]
- Exton J. H. Role of calcium and phosphoinositides in the actions of certain hormones and neurotransmitters. J Clin Invest. 1985 Jun;75(6):1753–1757. doi: 10.1172/JCI111886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farack U. M., Kautz U., Loeschke K. Loperamide reduces the intestinal secretion but not the mucosal cAMP accumulation induced by choleratoxin. Naunyn Schmiedebergs Arch Pharmacol. 1981 Sep;317(2):178–179. doi: 10.1007/BF00500077. [DOI] [PubMed] [Google Scholar]
- Farack U. M., Loeschke K. Inhibition by loperamide of deoxycholic acid induced intestinal secretion. Naunyn Schmiedebergs Arch Pharmacol. 1984 Mar;325(3):286–289. doi: 10.1007/BF00495957. [DOI] [PubMed] [Google Scholar]
- Field M., Fromm D., McColl I. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Am J Physiol. 1971 May;220(5):1388–1396. doi: 10.1152/ajplegacy.1971.220.5.1388. [DOI] [PubMed] [Google Scholar]
- Field M., Graf L. H., Jr, Laird W. J., Smith P. L. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2800–2804. doi: 10.1073/pnas.75.6.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuchs R., Graf J., Peterlik M. Effects of 1 alpha,25-dihydroxycholecalciferol on sodium-ion translocation across chick intestinal brush-border membrane. Biochem J. 1985 Sep 1;230(2):441–449. doi: 10.1042/bj2300441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giagnoni G., Casiraghi L., Senini R., Revel L., Parolaro D., Sala M., Gori E. Loperamide: evidence of interaction with mu and delta opioid receptors. Life Sci. 1983;33 (Suppl 1):315–318. doi: 10.1016/0024-3205(83)90506-4. [DOI] [PubMed] [Google Scholar]
- Hardcastle J., Hardcastle P. T., Read N. W., Redfern J. S. The action of loperamide in inhibiting prostaglandin-induced intestinal secretion in the rat. Br J Pharmacol. 1981 Nov;74(3):563–569. doi: 10.1111/j.1476-5381.1981.tb10465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hokin L. E. Receptors and phosphoinositide-generated second messengers. Annu Rev Biochem. 1985;54:205–235. doi: 10.1146/annurev.bi.54.070185.001225. [DOI] [PubMed] [Google Scholar]
- Hughes S., Higgs N. B., Turnberg L. A. Antidiarrhoeal activity of loperamide: studies of its influence on ion transport across rabbit ileal mucosa in vitro. Gut. 1982 Nov;23(11):974–979. doi: 10.1136/gut.23.11.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S., Higgs N. B., Turnberg L. A. Loperamide has antisecretory activity in the human jejunum in vivo. Gut. 1984 Sep;25(9):931–935. doi: 10.1136/gut.25.9.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph S. K., Thomas A. P., Williams R. J., Irvine R. F., Williamson J. R. myo-Inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J Biol Chem. 1984 Mar 10;259(5):3077–3081. [PubMed] [Google Scholar]
- Kachur J. F., Miller R. J., Field M., Rivier J. Neurohumoral control of ileal electrolyte transport. I. Bombesin and related peptides. J Pharmacol Exp Ther. 1982 Mar;220(3):449–455. [PubMed] [Google Scholar]
- Kachur J. F., Miller R. J., Field M., Rivier J. Neurohumoral control of ileal electrolyte transport. II. Neurotensin and substance P. J Pharmacol Exp Ther. 1982 Mar;220(3):456–463. [PubMed] [Google Scholar]
- Karim S. M., Adaikan P. G. The effect of loperamide on prostaglandin induced diarrhoea in rat and man. Prostaglandins. 1977 Feb;13(2):321–331. doi: 10.1016/0090-6980(77)90011-9. [DOI] [PubMed] [Google Scholar]
- Kimmich G. A. Active sugar accumulation by isolated intestinal epithelial cells. A new model for sodium-dependent metabolite transport. Biochemistry. 1970 Sep 15;9(19):3669–3677. doi: 10.1021/bi00821a004. [DOI] [PubMed] [Google Scholar]
- Kimmich G. A. Preparation and properties of mucosl epithelial cells isolated frmsmall intestine of the chicken. Biochemistry. 1970 Sep 15;9(19):3659–3668. doi: 10.1021/bi00821a003. [DOI] [PubMed] [Google Scholar]
- Knickelbein R., Aronson P. S., Atherton W., Dobbins J. W. Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na-H exchange. Am J Physiol. 1983 Oct;245(4):G504–G510. doi: 10.1152/ajpgi.1983.245.4.G504. [DOI] [PubMed] [Google Scholar]
- Merritt J. E., Brown B. L., Tomlinson S. Loperamide and calmodulin. Lancet. 1982 Jan 30;1(8266):283–283. doi: 10.1016/s0140-6736(82)91006-6. [DOI] [PubMed] [Google Scholar]
- Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976 Mar 15;154(3):597–604. [PMC free article] [PubMed] [Google Scholar]
- Piercey M. F., Ruwart M. J. Naloxone inhibits the anti-diarrhoeal activity of loperamide. Br J Pharmacol. 1979 Jul;66(3):373–375. doi: 10.1111/j.1476-5381.1979.tb10840.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powell D. W., Berschneider H. M., Lawson L. D., Martens H. Regulation of water and ion movement in intestine. Ciba Found Symp. 1985;112:14–33. doi: 10.1002/9780470720936.ch2. [DOI] [PubMed] [Google Scholar]
- Reynolds I. J., Gould R. J., Snyder S. H. Loperamide: blockade of calcium channels as a mechanism for antidiarrheal effects. J Pharmacol Exp Ther. 1984 Dec;231(3):628–632. [PubMed] [Google Scholar]
- Sandhu B. K., Milla P. J., Harries J. T. Mechanisms of action of loperamide. Scand J Gastroenterol Suppl. 1983;84:85–92. [PubMed] [Google Scholar]
- Sandhu B. K., Tripp J. H., Candy D. C., Harries J. T. Loperamide: studies on its mechanism of action. Gut. 1981 Aug;22(8):658–662. doi: 10.1136/gut.22.8.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiller L. R., Santa Ana C. A., Morawski S. G., Fordtran J. S. Mechanism of the antidiarrheal effect of loperamide. Gastroenterology. 1984 Jun;86(6):1475–1480. [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walling M. W., Brasitus T. A., Kimberg D. V. Effects of calcitonin and substance P on the transport of Ca, Na and Cl across rat ileum in vitro. Gastroenterology. 1977 Jul;73(1):89–94. [PubMed] [Google Scholar]
- Watt J., Candy D. C., Gregory B., Tripp J. H., Harries J. T. Loperamide modifies Escherichia coli, heat-stable enterotoxin-induced intestinal secretion. J Pediatr Gastroenterol Nutr. 1982;1(4):583–586. doi: 10.1097/00005176-198212000-00023. [DOI] [PubMed] [Google Scholar]
- Zavecz J. H., Jackson T. E., Limp G. L., Yellin T. O. Relationship between anti-diarrheal activity and binding to calmodulin. Eur J Pharmacol. 1982 Mar 12;78(3):375–377. doi: 10.1016/0014-2999(82)90042-5. [DOI] [PubMed] [Google Scholar]