Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jul;78(1):288–294. doi: 10.1172/JCI112563

Hypophysiotropic and neuromodulatory regulation of adrenocorticotropin in the human fetal pituitary gland.

Z Blumenfeld, R B Jaffe
PMCID: PMC329560  PMID: 3013939

Abstract

Synthetic human corticotropin-releasing factor (hCRF) stimulated ACTH secretion by human fetal pituitaries in superfusion and dispersed human fetal pituitary cells cultured on an extracellular matrix in static incubation from 14 to 23 wk gestational age. The action of hCRF in vitro was potentiated by arginine vasopressin (AVP) at all ages studied. 8-Br-cAMP induced a response similar to hCRF. The AVP effect on ACTH was synergistic with both CRF and 8-Br-cAMP. hCRF-mediated secretion of ACTH was noncompetitively inhibited by 24-h pretreatment, or by 3-h concomitant treatment, with dexamethasone. Neither oxytocin, catecholamines, prostaglandins, nor indomethacin exerted significant effects on ACTH secretion, either alone or in combination with hCRF or AVP during the gestational ages studied. These results support a physiologic role for CRF in the regulation of secretion by corticotropic cells as early as 14 wk gestation, by which time corticotropes and ability to secrete ACTH have been demonstrated.

Full text

PDF
288

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera G., Harwood J. P., Wilson J. X., Morell J., Brown J. H., Catt K. J. Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J Biol Chem. 1983 Jul 10;258(13):8039–8045. [PubMed] [Google Scholar]
  2. Antoni F. A., Holmes M. C., Jones M. T. Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides. 1983 Jul-Aug;4(4):411–415. doi: 10.1016/0196-9781(83)90041-4. [DOI] [PubMed] [Google Scholar]
  3. Baker B. L., Jaffe R. B. The genesis of cell types in the adenohypophysis of the human fetus as observed with immunocytochemistry. Am J Anat. 1975 Jun;143(2):137–161. doi: 10.1002/aja.1001430202. [DOI] [PubMed] [Google Scholar]
  4. Bethea C. L., Ramsdell J. S., Jaffe R. B., Wilson C. B., Weiner R. I. Characterization of the dopaminergic regulation of human prolactin-secreting cells cultured on extracellular matrix. J Clin Endocrinol Metab. 1982 May;54(5):893–902. doi: 10.1210/jcem-54-5-893. [DOI] [PubMed] [Google Scholar]
  5. Bethea C. L., Weiner R. I. Human prolactin secreting adenoma cells maintained on extracellular matrix. Endocrinology. 1981 Jan;108(1):357–360. doi: 10.1210/endo-108-1-357. [DOI] [PubMed] [Google Scholar]
  6. Bilezikjian L. M., Vale W. W. Glucocorticoids inhibit corticotropin-releasing factor-induced production of adenosine 3',5'-monophosphate in cultured anterior pituitary cells. Endocrinology. 1983 Aug;113(2):657–662. doi: 10.1210/endo-113-2-657. [DOI] [PubMed] [Google Scholar]
  7. Buckingham J. C. Corticotrophin releasing factor. Pharmacol Rev. 1979 Dec;31(4):253–275. [PubMed] [Google Scholar]
  8. Buckingham J. C., Hodges J. R. The use of corticotrophin production by adenohypophysial tissue in vitro for the detection and estimation of potential corticotrophin releasing factors. J Endocrinol. 1977 Feb;72(2):187–193. doi: 10.1677/joe.0.0720187. [DOI] [PubMed] [Google Scholar]
  9. Dévai A. T., Kuznetsova L. V., Stark E., Bukulya B., Acs Z. s. Funktsional'noe sozrevanie sistemy kortikotropin-rilizing-faktor--adrenokortikotropnyi gormon u cheloveka v period vnutriutrobnoi zhizni. Issledovanie in vitro. Biull Eksp Biol Med. 1982 Jul;94(7):88–91. [PubMed] [Google Scholar]
  10. Fleischer N., Donald R. A., Butcher R. W. Involvement of adenosine 3',5'-monophosphate in release of ACTH. Am J Physiol. 1969 Nov;217(5):1287–1291. doi: 10.1152/ajplegacy.1969.217.5.1287. [DOI] [PubMed] [Google Scholar]
  11. Fleischer N., Vale W. Inhibition of vasopressin-induced ACTH release from the pituitary by glucocorticoids in vitro. Endocrinology. 1968 Dec;83(6):1232–1236. doi: 10.1210/endo-83-6-1232. [DOI] [PubMed] [Google Scholar]
  12. Gibbs D. M. High concentrations of oxytocin in hypophysial portal plasma. Endocrinology. 1984 Apr;114(4):1216–1218. doi: 10.1210/endo-114-4-1216. [DOI] [PubMed] [Google Scholar]
  13. Gibbs D. M. Measurement of hypothalamic corticotropin-releasing factors in hypophyseal portal blood. Fed Proc. 1985 Jan;44(1 Pt 2):203–206. [PubMed] [Google Scholar]
  14. Gibbs D. M., Stewart R. D., Liu J. H., Vale W., Rivier J., Yen S. S. Effects of synthetic corticotropin-releasing factor and dopamine on the release of immunoreactive beta-endorphin/beta-lipotropin and alpha-melanocyte-stimulating hormone from human fetal pituitaries in vitro. J Clin Endocrinol Metab. 1982 Dec;55(6):1149–1152. doi: 10.1210/jcem-55-6-1149. [DOI] [PubMed] [Google Scholar]
  15. Gibbs D. M., Stewart R. D., Vale W., Rivier J., Yen S. S. Synthetic corticotropin-releasing factor stimulates secretion of immunoreactive beta-endorphin/beta-lipotropin and ACTH by human fetal pituitaries in vitro. Life Sci. 1983 Jan 31;32(5):547–550. doi: 10.1016/0024-3205(83)90150-9. [DOI] [PubMed] [Google Scholar]
  16. Gibbs D. M., Vale W. Presence of corticotropin releasing factor-like immunoreactivity in hypophysial portal blood. Endocrinology. 1982 Oct;111(4):1418–1420. doi: 10.1210/endo-111-4-1418. [DOI] [PubMed] [Google Scholar]
  17. Giguere V., Cote J., Labrie F. Characteristics of the alpha-adrenergic stimulation of adrenocorticotropin secretion in rat anterior pituitary cells. Endocrinology. 1981 Sep;109(3):757–762. doi: 10.1210/endo-109-3-757. [DOI] [PubMed] [Google Scholar]
  18. Giguère V., Labrie F. Additive effects of epinephrine and corticotropin-releasing factor (CRF) on adrenocorticotropin release in rat anterior pituitary cells. Biochem Biophys Res Commun. 1983 Jan 27;110(2):456–462. doi: 10.1016/0006-291x(83)91171-3. [DOI] [PubMed] [Google Scholar]
  19. Gillies G., Lowry P. Corticotrophin releasing factor may be modulated vasopressin. Nature. 1979 Mar 29;278(5703):463–464. doi: 10.1038/278463a0. [DOI] [PubMed] [Google Scholar]
  20. Gospodarowicz D., Bialecki H., Greenburg G. Purification of the fibroblast growth factor activity from bovine brain. J Biol Chem. 1978 May 25;253(10):3736–3743. [PubMed] [Google Scholar]
  21. Gospodarowicz D., Mescher A. L., Birdwell C. R. Stimulation of corneal endothelial cell proliferations in vitro by fibroblast and epidermal growth factors. Exp Eye Res. 1977 Jul;25(1):75–89. doi: 10.1016/0014-4835(77)90248-2. [DOI] [PubMed] [Google Scholar]
  22. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  23. Hedge G. A. The effect of prostaglandins on ACTH secretion. Endocrinology. 1972 Oct;91(4):925–933. doi: 10.1210/endo-91-4-925. [DOI] [PubMed] [Google Scholar]
  24. Johnston C. A., Gibbs D. M., Negro-Vilar A. High concentrations of epinephrine derived from a central source and of 5-hydroxyindole-3-acetic acid in hypophysial portal plasma. Endocrinology. 1983 Aug;113(2):819–821. doi: 10.1210/endo-113-2-819. [DOI] [PubMed] [Google Scholar]
  25. Keller-Wood M. E., Dallman M. F. Corticosteroid inhibition of ACTH secretion. Endocr Rev. 1984 Winter;5(1):1–24. doi: 10.1210/edrv-5-1-1. [DOI] [PubMed] [Google Scholar]
  26. Kraicer J., Chow A. E. Release of growth hormone from purified somatotrophs: use of perifusion system to elucidate interrelations among Ca++, adenosine 3',5'-monophosphate, and somatostatin. Endocrinology. 1982 Oct;111(4):1173–1180. doi: 10.1210/endo-111-4-1173. [DOI] [PubMed] [Google Scholar]
  27. Kraicer J., Milligan J. V. Suppression of ACTH release from adenophypophysis by corticosterone: an in vitro study. Endocrinology. 1970 Aug;87(2):371–376. doi: 10.1210/endo-87-2-371. [DOI] [PubMed] [Google Scholar]
  28. O'Hare M. J., Nice E. C. Hydrophobic high-performance liquid chromatography of hormonal polypeptides and proteins on alkylsilane-bonded silica. J Chromatogr. 1979 Apr 1;171:209–226. doi: 10.1016/s0021-9673(01)95300-2. [DOI] [PubMed] [Google Scholar]
  29. Palkovits M. Neural pathways involved in ACTH regulation. Ann N Y Acad Sci. 1977 Oct 28;297:455–476. doi: 10.1111/j.1749-6632.1977.tb41875.x. [DOI] [PubMed] [Google Scholar]
  30. Petrovic S. L., McDonald J. K., Snyder G. D., McCann S. M. Characterization of beta-adrenergic receptors in rat brain and pituitary using a new high-affinity ligand, [125I]iodocyanopindolol. Brain Res. 1983 Feb 21;261(2):249–259. doi: 10.1016/0006-8993(83)90628-5. [DOI] [PubMed] [Google Scholar]
  31. Plotsky P. M., Bruhn T. O., Vale W. Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology. 1985 Feb;116(2):633–639. doi: 10.1210/endo-116-2-633. [DOI] [PubMed] [Google Scholar]
  32. Plotsky P. M. Hypophyseotropic regulation of adenohypophyseal adrenocorticotropin secretion. Fed Proc. 1985 Jan;44(1 Pt 2):207–213. [PubMed] [Google Scholar]
  33. Plotsky P. M., Vale W. Hemorrhage-induced secretion of corticotropin-releasing factor-like immunoreactivity into the rat hypophysial portal circulation and its inhibition by glucocorticoids. Endocrinology. 1984 Jan;114(1):164–169. doi: 10.1210/endo-114-1-164. [DOI] [PubMed] [Google Scholar]
  34. Portanova R., Sayers G. Isolated pituitary cells: CRF-like activity of neurohypophysial and related polypeptides. Proc Soc Exp Biol Med. 1973 Jul;143(3):661–666. doi: 10.3181/00379727-143-37386. [DOI] [PubMed] [Google Scholar]
  35. Recht L. D., Hoffman D. L., Haldar J., Silverman A. J., Zimmerman E. A. Vasopressin concentrations in hypophysial portal plasma: insignificant reduction following removal of the posterior pituitary gland. Neuroendocrinology. 1981 Aug;33(2):88–90. doi: 10.1159/000123208. [DOI] [PubMed] [Google Scholar]
  36. Rees L. H., Cook D. M., Kendall J. W., Allen C. F., Kramer R. M., Ratcliffe J. G., Knight R. A. A radioimmunoassay for rat plasma ACTH. Endocrinology. 1971 Jul;89(1):254–261. doi: 10.1210/endo-89-1-254. [DOI] [PubMed] [Google Scholar]
  37. Sayers G., Portanova R. Secretion of ACTH by isolated anterior pituitary cells: kinetics of stimulation of corticotropin-releasing factor and of inhibition by corticosterone. Endocrinology. 1974 Jun;94(6):1723–1730. doi: 10.1210/endo-94-6-1723. [DOI] [PubMed] [Google Scholar]
  38. Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology. 1983;36(3):165–186. doi: 10.1159/000123454. [DOI] [PubMed] [Google Scholar]
  39. Vale W., River C. Substances modulating the secretion of ACTH by cultured anterior pituitary cells. Fed Proc. 1977 Jul;36(8):2094–2099. [PubMed] [Google Scholar]
  40. Vale W., Rivier C., Yang L., Minick S., Guillemin R. Effects of purified hypothalamic corticotropin-releasing factor and other substances on the secretion of adrenocorticotropin and beta-endorphin-like immunoactivities in vitro. Endocrinology. 1978 Nov;103(5):1910–1915. doi: 10.1210/endo-103-5-1910. [DOI] [PubMed] [Google Scholar]
  41. Vale W., Spiess J., Rivier C., Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981 Sep 18;213(4514):1394–1397. doi: 10.1126/science.6267699. [DOI] [PubMed] [Google Scholar]
  42. Vale W., Vaughan J., Smith M., Yamamoto G., Rivier J., Rivier C. Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology. 1983 Sep;113(3):1121–1131. doi: 10.1210/endo-113-3-1121. [DOI] [PubMed] [Google Scholar]
  43. Van Leeuwen F. W., Wolters P. Light microscopic autoradiographic localization of [3H]arginine-vasopressin binding sites in the rat brain and kidney. Neurosci Lett. 1983 Oct 31;41(1-2):61–66. doi: 10.1016/0304-3940(83)90223-9. [DOI] [PubMed] [Google Scholar]
  44. Vlaskovska M., Hertting G., Knepel W. Adrenocorticotropin and beta-endorphin release from rat adenohypophysis in vitro: inhibition by prostaglandin E2 formed locally in response to vasopressin and corticotropin-releasing factor. Endocrinology. 1984 Sep;115(3):895–903. doi: 10.1210/endo-115-3-895. [DOI] [PubMed] [Google Scholar]
  45. Wynn P. C., Aguilera G., Morell J., Catt K. J. Properties and regulation of high-affinity pituitary receptors for corticotropin-releasing factor. Biochem Biophys Res Commun. 1983 Jan 27;110(2):602–608. doi: 10.1016/0006-291x(83)91192-0. [DOI] [PubMed] [Google Scholar]
  46. Zimmerman E. A., Nilaver G., Hou-Yu A., Silverman A. J. Vasopressinergic and oxytocinergic pathways in the central nervous system. Fed Proc. 1984 Jan;43(1):91–96. [PubMed] [Google Scholar]
  47. de Wied D., Witter A., Versteeg D. H., Mulder A. H. Release of ACTH by substances of central nervous system origin. Endocrinology. 1969 Sep;85(3):561–569. doi: 10.1210/endo-85-3-561. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES