Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Feb;81(2):376–380. doi: 10.1172/JCI113329

Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.

S Muto 1, S Sansom 1, G Giebisch 1
PMCID: PMC329579  PMID: 3339125

Abstract

The cortical collecting tubule is one of the main nephron sites where mineralocorticoids and a high potassium diet modulate sodium (Na) and potassium (K) transport. In this study we explored the steroid-independent effects of a high K diet on the electrical transport properties of the isolated rabbit cortical collecting tubule principal cells. The electrophysiological analysis included transepithelial and single-cell potential measurements and equivalent circuit analysis. Rabbits were adrenalectomized (ADX) and received either a control diet (300 meq K/kg diet) or a high K diet (600 meq/kg diet) for 10 d before the experiment. The mean plasma K of ADX control animals was 6.9 mM, that of ADX animals on the high K diet 8.3 mM. The transepithelial potential difference was significantly elevated in the high K group (-3.5 mV, lumen negative), compared with ADX controls (-1.4 mV). The basolateral membrane potential in high K animals was also significantly elevated (-73 mV, cell negative, compared with -63 mV in controls). Estimates of the apical membrane partial Na and K conductances (GaNa and GaK) and of ion currents (IaNa and IaK) also demonstrated stimulation by the high K diet. In the high K group, both GaNa and GaK (0.56 and 2.67 mS.cm-2) were higher than control values (0.27 and 1.17 mS.cm-2). IaNa and IaK were also higher in high K animals (47.8 and -26.2 microA.cm-2) compared with control animals (22.4 and -11.6 microA.cm-2). Thus, a high K intake per se can induce electrophysiological changes consistent with stimulation of Na reabsorption and K secretion.

Full text

PDF
376

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  2. Dobyan D. C., Bulger R. E. Renal carbonic anhydrase. Am J Physiol. 1982 Oct;243(4):F311–F324. doi: 10.1152/ajprenal.1982.243.4.F311. [DOI] [PubMed] [Google Scholar]
  3. El Mernissi G., Doucet A. Specific activity of Na-K-ATPase after adrenalectomy and hormone replacement along the rabbit nephron. Pflugers Arch. 1984 Nov;402(3):258–263. doi: 10.1007/BF00585508. [DOI] [PubMed] [Google Scholar]
  4. Field M. J., Stanton B. A., Giebisch G. H. Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J Clin Invest. 1984 Nov;74(5):1792–1802. doi: 10.1172/JCI111598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garg L. C., Knepper M. A., Burg M. B. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol. 1981 Jun;240(6):F536–F544. doi: 10.1152/ajprenal.1981.240.6.F536. [DOI] [PubMed] [Google Scholar]
  6. Garg L. C., Narang N. Renal adaptation to potassium in the adrenalectomized rabbit. Role of distal tubular sodium-potassium adenosine triphosphatase. J Clin Invest. 1985 Sep;76(3):1065–1070. doi: 10.1172/JCI112059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirsch D., Kashgarian M., Boulpaep E. L., Hayslett J. P. Role of aldosterone in the mechanism of potassium adaptation in the initial collecting tubule. Kidney Int. 1984 Dec;26(6):798–807. doi: 10.1038/ki.1984.221. [DOI] [PubMed] [Google Scholar]
  8. Kaissling B., Le Hir M. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. I. Structural changes. Cell Tissue Res. 1982;224(3):469–492. doi: 10.1007/BF00213746. [DOI] [PubMed] [Google Scholar]
  9. Koeppen B. M., Biagi B. A., Giebisch G. H. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol. 1983 Jan;244(1):F35–F47. doi: 10.1152/ajprenal.1983.244.1.F35. [DOI] [PubMed] [Google Scholar]
  10. Koeppen B. M., Giebisch G., Biagi B. A. Electrophysiology of mammalian renal tubules: inferences from intracellular microelectrode studies. Annu Rev Physiol. 1983;45:497–517. doi: 10.1146/annurev.ph.45.030183.002433. [DOI] [PubMed] [Google Scholar]
  11. Le Hir M., Kaissling B., Dubach U. C. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. II. Changes in Na-K-ATPase activity. Cell Tissue Res. 1982;224(3):493–504. doi: 10.1007/BF00213747. [DOI] [PubMed] [Google Scholar]
  12. Matsumura Y., Cohen B., Guggino W. B., Giebisch G. Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J Membr Biol. 1984;79(2):153–161. doi: 10.1007/BF01872119. [DOI] [PubMed] [Google Scholar]
  13. Mujais S. K., Chekal M. A., Jones W. J., Hayslett J. P., Katz A. I. Modulation of renal sodium-potassium-adenosine triphosphatase by aldosterone. Effect of high physiologic levels on enzyme activity in isolated rat and rabbit tubules. J Clin Invest. 1985 Jul;76(1):170–176. doi: 10.1172/JCI111942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muto S., Giebisch G., Sansom S. Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am J Physiol. 1987 Oct;253(4 Pt 2):F742–F752. doi: 10.1152/ajprenal.1987.253.4.F742. [DOI] [PubMed] [Google Scholar]
  15. O'Neil R. G., Hayhurst R. A. Functional differentiation of cell types of cortical collecting duct. Am J Physiol. 1985 Mar;248(3 Pt 2):F449–F453. doi: 10.1152/ajprenal.1985.248.3.F449. [DOI] [PubMed] [Google Scholar]
  16. O'Neil R. G., Hayhurst R. A. Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. J Membr Biol. 1985;85(2):169–179. doi: 10.1007/BF01871269. [DOI] [PubMed] [Google Scholar]
  17. O'Neil R. G., Helman S. I. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am J Physiol. 1977 Dec;233(6):F544–F558. doi: 10.1152/ajprenal.1977.233.6.F544. [DOI] [PubMed] [Google Scholar]
  18. O'Neil R. G., Sansom S. C. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am J Physiol. 1984 Jul;247(1 Pt 2):F14–F24. doi: 10.1152/ajprenal.1984.247.1.F14. [DOI] [PubMed] [Google Scholar]
  19. Petty K. J., Kokko J. P., Marver D. Secondary effect of aldosterone on Na-KATPase activity in the rabbit cortical collecting tubule. J Clin Invest. 1981 Dec;68(6):1514–1521. doi: 10.1172/JCI110405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reif M. C., Troutman S. L., Schafer J. A. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. J Clin Invest. 1986 Apr;77(4):1291–1298. doi: 10.1172/JCI112433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sansom S. C., O'Neil R. G. Effects of mineralocorticoids on transport properties of cortical collecting duct basolateral membrane. Am J Physiol. 1986 Oct;251(4 Pt 2):F743–F757. doi: 10.1152/ajprenal.1986.251.4.F743. [DOI] [PubMed] [Google Scholar]
  22. Sansom S. C., O'Neil R. G. Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol. 1985 Jun;248(6 Pt 2):F858–F868. doi: 10.1152/ajprenal.1985.248.6.F858. [DOI] [PubMed] [Google Scholar]
  23. Sansom S. C., Weinman E. J., O'Neil R. G. Microelectrode assessment of chloride-conductive properties of cortical collecting duct. Am J Physiol. 1984 Aug;247(2 Pt 2):F291–F302. doi: 10.1152/ajprenal.1984.247.2.F291. [DOI] [PubMed] [Google Scholar]
  24. Sansom S., Muto S., Giebisch G. Na-dependent effects of DOCA on cellular transport properties of CCDs from ADX rabbits. Am J Physiol. 1987 Oct;253(4 Pt 2):F753–F759. doi: 10.1152/ajprenal.1987.253.4.F753. [DOI] [PubMed] [Google Scholar]
  25. Schlatter E., Schafer J. A. Electrophysiological studies in principal cells of rat cortical collecting tubules. ADH increases the apical membrane Na+-conductance. Pflugers Arch. 1987 Jun;409(1-2):81–92. doi: 10.1007/BF00584753. [DOI] [PubMed] [Google Scholar]
  26. Schultz S. G. Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by "flush-through". Am J Physiol. 1981 Dec;241(6):F579–F590. doi: 10.1152/ajprenal.1981.241.6.F579. [DOI] [PubMed] [Google Scholar]
  27. Schwartz G. J., Burg M. B. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol. 1978 Dec;235(6):F576–F585. doi: 10.1152/ajprenal.1978.235.6.F576. [DOI] [PubMed] [Google Scholar]
  28. Stanton B. A., Giebisch G. H. Potassium transport by the renal distal tubule: effects of potassium loading. Am J Physiol. 1982 Nov;243(5):F487–F493. doi: 10.1152/ajprenal.1982.243.5.F487. [DOI] [PubMed] [Google Scholar]
  29. Stanton B., Janzen A., Klein-Robbenhaar G., DeFronzo R., Giebisch G., Wade J. Ultrastructure of rat initial collecting tubule. Effect of adrenal corticosteroid treatment. J Clin Invest. 1985 Apr;75(4):1327–1334. doi: 10.1172/JCI111833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stanton B., Pan L., Deetjen H., Guckian V., Giebisch G. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J Clin Invest. 1987 Jan;79(1):198–206. doi: 10.1172/JCI112783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stokes J. B. Potassium secretion by cortical collecting tubule: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol. 1981 Oct;241(4):F395–F402. doi: 10.1152/ajprenal.1981.241.4.F395. [DOI] [PubMed] [Google Scholar]
  32. Wade J. B., O'Neil R. G., Pryor J. L., Boulpaep E. L. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol. 1979 May;81(2):439–445. doi: 10.1083/jcb.81.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Westenfelder C., Arevalo G. J., Baranowski R. L., Kurtzman N. A., Katz A. I. Relationship between mineralocorticoids and renal Na+-K+-ATPase: sodium reabsorption. Am J Physiol. 1977 Dec;233(6):F593–F599. doi: 10.1152/ajprenal.1977.233.6.F593. [DOI] [PubMed] [Google Scholar]
  34. Wingo C. S. Cortical collecting tubule potassium secretion: effect of amiloride, ouabain, and luminal sodium concentration. Kidney Int. 1985 Jun;27(6):886–891. doi: 10.1038/ki.1985.96. [DOI] [PubMed] [Google Scholar]
  35. Wingo C. S., Seldin D. W., Kokko J. P., Jacobson H. R. Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J Clin Invest. 1982 Sep;70(3):579–586. doi: 10.1172/JCI110650. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES