Abstract
We investigated sulfur and methyl group metabolism in a 31-yr-old man with partial hepatic methionine adenosyltransferase (MAT) deficiency. The patient's cultured fibroblasts and erythrocytes had normal MAT activity. Hepatic S-adenosylmethionine (SAM) was slightly decreased. This clinically normal individual lives with a 20-30-fold elevation of plasma methionine (0.72 mM). He excretes in his urine methionine and L-methionine-d-sulfoxide (2.7 mmol/d), a mixed disulfide of methanethiol and a thiol bound to an unidentified group X, which we abbreviate CH3S-SX (2.1 mmol/d), and smaller quantities of 4-methylthio-2-oxobutyrate and 3-methylthiopropionate. His breath contains 17-fold normal concentrations of dimethylsulfide. He converts only 6-7 mmol/d of methionine sulfur to inorganic sulfate. This abnormally low rate is due not to a decreased flux through the primarily defective enzyme, MAT, since SAM is produced at an essentially normal rate of 18 mmol/d, but rather to a rate of homocysteine methylation which is abnormally high in the face of the very elevated methionine concentrations demonstrated in this patient. These findings support the view that SAM (which is marginally low in this patient) is an important regulator that helps to determine the partitioning of homocysteine between degradation via cystathionine and conservation by reformation of methionine. In addition, these studies demonstrate that the methionine transamination pathway operates in the presence of an elevated body load of that amino acid in human beings, but is not sufficient to maintain methionine levels in a normal range.
Full text
PDF![390](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/85d97550cbef/jcinvest00481-0116.png)
![391](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/0e985490352c/jcinvest00481-0117.png)
![392](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/3c3031ec5c76/jcinvest00481-0118.png)
![393](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/c3bd3958450e/jcinvest00481-0119.png)
![394](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/257e89c144eb/jcinvest00481-0120.png)
![395](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/3cbc6e0e0ba8/jcinvest00481-0121.png)
![396](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/35cff471d468/jcinvest00481-0122.png)
![397](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5382/329581/b856258126aa/jcinvest00481-0123.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLOCK W. D., HUBBARD R. W., STEELE B. F. EXCRETION OF HISTIDINE AND HISTIDINE DERIVATIVES BY HUMAN SUBJECTS INGESTING PROTEIN FROM DIFFERENT SOURCES. J Nutr. 1965 Apr;85:419–425. doi: 10.1093/jn/85.4.419. [DOI] [PubMed] [Google Scholar]
- Backlund P. S., Jr, Smith R. A. Methionine synthesis from 5'-methylthioadenosine in rat liver. J Biol Chem. 1981 Feb 25;256(4):1533–1535. [PubMed] [Google Scholar]
- Benevenga N. J., Egan A. R. Quantitative aspects of methionine metabolism. Prog Clin Biol Res. 1983;125:327–341. [PubMed] [Google Scholar]
- Bernardini I., Rizzo W. B., Dalakas M., Bernar J., Gahl W. A. Plasma and muscle free carnitine deficiency due to renal Fanconi syndrome. J Clin Invest. 1985 Apr;75(4):1124–1130. doi: 10.1172/JCI111806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billings R. E., Noker P. E., Tephly T. R. The role of methionine in regulating folate-dependent reactions in isolated rat hepatocytes. Arch Biochem Biophys. 1981 Apr 15;208(1):108–120. doi: 10.1016/0003-9861(81)90129-6. [DOI] [PubMed] [Google Scholar]
- Borum P. R. Carnitine. Annu Rev Nutr. 1983;3:233–259. doi: 10.1146/annurev.nu.03.070183.001313. [DOI] [PubMed] [Google Scholar]
- Calloway D. H., Margen S. Variation in endogenous nitrogen excretion and dietary nitrogen utilization as determinants of human protein requirement. J Nutr. 1971 Feb;101(2):205–216. doi: 10.1093/jn/101.2.205. [DOI] [PubMed] [Google Scholar]
- Cooper A. J. Biochemistry of sulfur-containing amino acids. Annu Rev Biochem. 1983;52:187–222. doi: 10.1146/annurev.bi.52.070183.001155. [DOI] [PubMed] [Google Scholar]
- Favier A., Caillat D. Dosage par chromatographie gazeuse avec détection en photometrie de flamme de l'acide alpha-céto-gamma-méthylthiobutyrique urinaire dans les hyperméthioninémies. Clin Chim Acta. 1977 Sep 1;79(2):419–423. doi: 10.1016/0009-8981(77)90438-7. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Kyle W. E., Martin J. L., Pick A. M. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun. 1975 Sep 2;66(1):81–87. doi: 10.1016/s0006-291x(75)80297-x. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Martin J. J. Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem. 1986 Feb 5;261(4):1582–1587. [PubMed] [Google Scholar]
- Finkelstein J. D., Martin J. J. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem. 1984 Aug 10;259(15):9508–9513. [PubMed] [Google Scholar]
- Finkelstein J. D., Mudd S. H. Trans-sulfuration in mammals. The methionine-sparing effect of cystine. J Biol Chem. 1967 Mar 10;242(5):873–880. [PubMed] [Google Scholar]
- Gahl W. A., Finkelstein J. D., Mullen K. D., Bernardini I., Martin J. J., Backlund P., Ishak K. G., Hoofnagle J. H., Mudd S. H. Hepatic methionine adenosyltransferase deficiency in a 31-year-old man. Am J Hum Genet. 1987 Jan;40(1):39–49. [PMC free article] [PubMed] [Google Scholar]
- Gaull G. E., Tallan H. H., Lonsdale D., Przyrembel H., Schaffner F., von Bassewitz D. B. Hypermethioninemia associated with methionine adenosyltransferase deficiency: clinical, morphologic, and biochemical observations on four patients. J Pediatr. 1981 May;98(5):734–741. doi: 10.1016/s0022-3476(81)80833-5. [DOI] [PubMed] [Google Scholar]
- Huennekens F. M., DiGirolamo P. M., Fujii K., Jacobsen D. W., Vitols K. S. B12 -- dependent methionine synthetase as a potential target for cancer chemotherapy. Adv Enzyme Regul. 1976;14:187–205. doi: 10.1016/0065-2571(76)90013-3. [DOI] [PubMed] [Google Scholar]
- Kaji H., Hisamura M., Saito N., Murao M. Biochemical aspect of dimethyl sulfide breath test in the studies on methionine metabolism. Res Commun Chem Pathol Pharmacol. 1981 Jun;32(3):515–523. [PubMed] [Google Scholar]
- Kaji H., Saito K., Saito N., Hisamura M., Ishimoto M., Kondo H. Simple gas chromatographic analysis of 3-methylthiopropionate in human urine. J Chromatogr. 1983 Jan 14;272(1):166–169. doi: 10.1016/s0378-4347(00)86113-7. [DOI] [PubMed] [Google Scholar]
- Kaji H., Saito N., Murao M., Ishimoto M., Kondo H., Gasa S., Saito K. Gas chromatographic and gas chromatographic--mass spectrometric studies on alpha-keto-gamma-methylthiobutyric acid in urine following ingestion of optical isomers of methionine. J Chromatogr. 1980 Nov 14;221(1):145–148. doi: 10.1016/s0378-4347(00)81016-6. [DOI] [PubMed] [Google Scholar]
- Krebs H. A., Hems R., Tyler B. The regulation of folate and methionine metabolism. Biochem J. 1976 Aug 15;158(2):341–353. doi: 10.1042/bj1580341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutzbach C., Stokstad E. L. Feedback inhibition of methylene-tetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochim Biophys Acta. 1967 May 16;139(1):217–220. doi: 10.1016/0005-2744(67)90140-4. [DOI] [PubMed] [Google Scholar]
- Kutzbach C., Stokstad E. L. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine. Biochim Biophys Acta. 1971 Dec 15;250(3):459–477. doi: 10.1016/0005-2744(71)90247-6. [DOI] [PubMed] [Google Scholar]
- Laster L., Mudd S. H., Finkelstein J. D., Irreverre F. Homocystinuria due to cystathionine synthase deficiency: the metabolism of L-methionine. J Clin Invest. 1965 Oct;44(10):1708–1719. doi: 10.1172/JCI105278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liau M. C., Chang C. F., Belanger L., Grenier A. Correlation of isozyme patterns of S-adenosylmethionine synthetase with fetal stages and pathological states of the liver. Cancer Res. 1979 Jan;39(1):162–169. [PubMed] [Google Scholar]
- Lundquist P., Mårtensson J., Sörbo B., Ohman S. Turbidimetry of inorganic sulfate, ester sulfate, and total sulfur in urine. Clin Chem. 1980 Jul;26(8):1178–1181. [PubMed] [Google Scholar]
- Mangum J. H., North J. A. Isolation of a cobalamin containing 5-methyltetrahydrofolate-homocysteine transmethylase from mammalian kidney. Biochemistry. 1971 Sep 28;10(20):3765–3769. doi: 10.1021/bi00796a019. [DOI] [PubMed] [Google Scholar]
- Mitchell A. D., Benevenga N. J. The role of transamination in methionine oxidation in the rat. J Nutr. 1978 Jan;108(1):67–78. doi: 10.1093/jn/108.1.67. [DOI] [PubMed] [Google Scholar]
- Mudd S. H., Ebert M. H., Scriver C. R. Labile methyl group balances in the human: the role of sarcosine. Metabolism. 1980 Aug;29(8):707–720. doi: 10.1016/0026-0495(80)90192-4. [DOI] [PubMed] [Google Scholar]
- Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
- Mudd S. H., Poole J. R. Labile methyl balances for normal humans on various dietary regimens. Metabolism. 1975 Jun;24(6):721–735. doi: 10.1016/0026-0495(75)90040-2. [DOI] [PubMed] [Google Scholar]
- Mårtensson J. The occurrence of 4-methylthio-2-hydroxybutyrate in human urine. Anal Biochem. 1986 Apr;154(1):43–49. doi: 10.1016/0003-2697(86)90493-8. [DOI] [PubMed] [Google Scholar]
- Poole J. R., Mudd S. H., Conerly E. B., Edwards W. A. Homocystinuria due to cystathionine synthase deficiency. Studies of nitrogen balance and sulfur excretion. J Clin Invest. 1975 May;55(5):1033–1048. doi: 10.1172/JCI108004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAY W. J., Jr, KOSHLAND D. E., Jr Identification of amino acids involved in phosphoglucomutase action. J Biol Chem. 1962 Aug;237:2493–2505. [PubMed] [Google Scholar]
- Steele R. D., Benevenga N. J. Identification of 3-methylthiopropionic acid as an intermediate in mammalian methionine metabolism in vitro. J Biol Chem. 1978 Nov 10;253(21):7844–7850. [PubMed] [Google Scholar]
- Steele R. D., Benevenga N. J. The metabolism of 3-methylthiopropionate in rat liver homogenates. J Biol Chem. 1979 Sep 25;254(18):8885–8890. [PubMed] [Google Scholar]
- Tallan H. H. Methionine adenosyltransferase in man: evidence for multiple forms. Biochem Med. 1979 Apr;21(2):129–140. doi: 10.1016/0006-2944(79)90064-4. [DOI] [PubMed] [Google Scholar]
- Tangerman A., Meuwese-Arends M. T., van Tongeren J. H. A new sensitive assay for measuring volatile sulphur compounds in human breath by Tenax trapping and gas chromatography and its application in liver cirrhosis. Clin Chim Acta. 1983 May 9;130(1):103–110. doi: 10.1016/0009-8981(83)90263-2. [DOI] [PubMed] [Google Scholar]
- Tangerman A., Meuwese-Arends M. T., van Tongeren J. H. New methods for the release of volatile sulfur compounds from human serum: its determination by Tenax trapping and gas chromatography and its application in liver diseases. J Lab Clin Med. 1985 Aug;106(2):175–182. [PubMed] [Google Scholar]