Abstract
Two intestinal brush border membrane carboxypeptidases were found to participate in the sequential digestion of proline-containing peptides representing a novel mechanism of hydrolysis from the COOH terminus. NH2-blocked prolyl tripeptides were rapidly hydrolyzed by either brush border membrane angiotensin converting enzyme (ACE, dipeptidyl carboxypeptidase, E.C. 3.4.15.1) or carboxypeptidase P (E.C.3.4.12-) depending on the position of the proline residue. Furthermore, these two enzymes were found to participate in a concerted manner to sequentially degrade larger proline-containing pentapeptides from the COOH terminus. A brush border membrane associated neutral endopeptidase also participated in the hydrolysis of the prolyl pentapeptides. During in vivo intestinal perfusion, the NH2-blocked prolyl peptides were degraded and their constituent amino acids efficiently absorbed by the intestine. Furthermore, hydrolysis and absorption of these peptides could be dramatically suppressed by low concentrations of captopril, a specific inhibitor of ACE. These studies show that prolyl peptides are efficiently and sequentially hydrolyzed from the COOH terminus by the combined action of ACE and carboxypeptidase P, and that these enzymes may play an important role in the digestion and assimilation of proline-containing peptides.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andria G., Cucchiara S., De Vizia B., De Ritis G., Mazzacca G., Auricchio S. Brush border and cytosol peptidase activities of human small intestine in normal subjects and celiac patients. Pediatr Res. 1980 Jun;14(6):812–818. doi: 10.1203/00006450-198006000-00008. [DOI] [PubMed] [Google Scholar]
- Auricchio S., Greco L., de Vizia B., Buonocore V. Dipeptidylaminopeptidase and carboxypeptidase activities of the brush border of rabbit small intestine. Gastroenterology. 1978 Dec;75(6):1073–1079. [PubMed] [Google Scholar]
- Bella A. M., Jr, Erickson R. H., Kim Y. S. Rat intestinal brush border membrane dipeptidyl-aminopeptidase IV: kinetic properties and substrate specificities of the purified enzyme. Arch Biochem Biophys. 1982 Oct 1;218(1):156–162. doi: 10.1016/0003-9861(82)90330-7. [DOI] [PubMed] [Google Scholar]
- Chung Y. C., Silk D. B., Kim Y. S. Intestinal transport of a tetrapeptide, L-leucylglycylglycylglycine, in rat small intestine in vivo. Clin Sci (Lond) 1979 Jul;57(1):1–11. doi: 10.1042/cs0570001. [DOI] [PubMed] [Google Scholar]
- Cushman D. W., Cheung H. S., Sabo E. F., Ondetti M. A. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry. 1977 Dec 13;16(25):5484–5491. doi: 10.1021/bi00644a014. [DOI] [PubMed] [Google Scholar]
- Cushman D. W., Ondetti M. A. Inhibitors of angiotensin-converting enzyme. Prog Med Chem. 1980;17:41–104. doi: 10.1016/s0079-6468(08)70157-7. [DOI] [PubMed] [Google Scholar]
- Erickson R. H., Bella A. M., Jr, Brophy E. J., Kobata A., Kim Y. S. Purification and molecular characterization of rat intestinal brush border membrane dipeptidyl aminopeptidase IV. Biochim Biophys Acta. 1983 Apr 20;756(3):258–265. doi: 10.1016/0304-4165(83)90333-1. [DOI] [PubMed] [Google Scholar]
- Gardner M. L. Intestinal assimilation of intact peptides and proteins from the diet--a neglected field? Biol Rev Camb Philos Soc. 1984 Aug;59(3):289–331. doi: 10.1111/j.1469-185x.1984.tb00708.x. [DOI] [PubMed] [Google Scholar]
- Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Birtwhistle W., Kim Y. W. Peptide hydrolases in the bruch border and soluble fractions of small intestinal mucosa of rat and man. J Clin Invest. 1972 Jun;51(6):1419–1430. doi: 10.1172/JCI106938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morita A., Chung Y. C., Freeman H. J., Erickson R. H., Sleisenger M. H., Kim Y. S. Intestinal assimilation of a proline-containing tetrapeptide. Role of a brush border membrane postproline dipeptidyl aminopeptidase IV. J Clin Invest. 1983 Aug;72(2):610–616. doi: 10.1172/JCI111009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ondetti M. A., Rubin B., Cushman D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977 Apr 22;196(4288):441–444. doi: 10.1126/science.191908. [DOI] [PubMed] [Google Scholar]
- Rubino A., Field M., Shwachman H. Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border. J Biol Chem. 1971 Jun 10;246(11):3542–3548. [PubMed] [Google Scholar]
- Silk D. B. Peptide transport. Clin Sci (Lond) 1981 Jun;60(6):607–615. doi: 10.1042/cs0600607. [DOI] [PubMed] [Google Scholar]
- Skovbjerg H. Immunoelectrophoretic studies on human small intestinal brush border proteins--the longitudinal distribution of peptidases and disaccharidases. Clin Chim Acta. 1981 May 5;112(2):205–212. doi: 10.1016/0009-8981(81)90379-x. [DOI] [PubMed] [Google Scholar]
- Song I. S., Yoshioka M., Erickson R. H., Miura S., Guan D., Kim Y. S. Identification and characterization of brush-border membrane-bound neutral metalloendopeptidases from rat small intestine. Gastroenterology. 1986 Nov;91(5):1234–1242. doi: 10.1016/s0016-5085(86)80022-1. [DOI] [PubMed] [Google Scholar]
- Suda H., Aoyagi T., Takeuchi T., Umezawa H. Letter: A thermolysin inhibitor produced by Actinomycetes: phospholamidon. J Antibiot (Tokyo) 1973 Oct;26(10):621–623. doi: 10.7164/antibiotics.26.621. [DOI] [PubMed] [Google Scholar]
- Svensson B., Danielsen M., Staun M., Jeppesen L., Norén O., Sjöström H. An amphiphilic form of dipeptidyl peptidase IV from pig small-intestinal brush-border membrane. Purification by immunoadsorbent chromatography and some properties. Eur J Biochem. 1978 Oct 16;90(3):489–498. doi: 10.1111/j.1432-1033.1978.tb12628.x. [DOI] [PubMed] [Google Scholar]
- Turner A. J., Matsas R., Kenny A. J. Are there neuropeptide-specific peptidases? Biochem Pharmacol. 1985 May 1;34(9):1347–1356. doi: 10.1016/0006-2952(85)90669-0. [DOI] [PubMed] [Google Scholar]
- Umezawa H., Aoyagi T., Suda H., Hamada M., Takeuchi T. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 1976 Jan;29(1):97–99. doi: 10.7164/antibiotics.29.97. [DOI] [PubMed] [Google Scholar]
- Ward P. E., Sheridan M. A. Angiotensin I converting enzyme of rat intestinal and vascular surface membrane. Biochim Biophys Acta. 1982 May 27;716(2):208–216. doi: 10.1016/0304-4165(82)90270-7. [DOI] [PubMed] [Google Scholar]
- Ward P. E., Sheridan M. A., Hammon K. J., Erdös E. G. Angiotensin I converting enzyme (kininase II) of the brush border of human and swine intestine. Biochem Pharmacol. 1980 Jun 1;29(11):1525–1529. doi: 10.1016/0006-2952(80)90603-6. [DOI] [PubMed] [Google Scholar]
- Yoshioka M., Erickson R. H., Woodley J. F., Gulli R., Guan D., Kim Y. S. Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion. Am J Physiol. 1987 Dec;253(6 Pt 1):G781–G786. doi: 10.1152/ajpgi.1987.253.6.G781. [DOI] [PubMed] [Google Scholar]
