Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):m232. doi: 10.1107/S1600536812001924

catena-Poly[[bis­(dimethyl­formamide-κO)cadmium]-bis­(μ-4-nitro­phenyl­cyanamido-κ2 N 1:N 3)]

Hossein Chiniforoshan a,*, Mehdi Jazestani a, Behrouz Notash b
PMCID: PMC3297207  PMID: 22412397

Abstract

In the title coordination polymer, [Cd(C7H4N3O2)2(C3H7NO)2]n, the CdII atom, lying on an inversion center, is six-coordinated in a distorted N4O2 octa­hedral geometry. The N atoms of the 4-nitrophenylcyanamide anions form the equatorial plane and the O atoms of the dimethyl­formamide mol­ecules occupy the axial positions. The anions act as bridging ligands, connecting the Cd atoms into a one-dimensional coordination polymer along [100].

Related literature  

For background to phenyl­cyanamide ligands and their complexes, see: Crutchley (2001). For polynuclear complexes of phenyl­cyanamide ligands, see: Ainscough et al. (1991); Chiniforoshan et al. (2009, 2010); Escuer et al. (2004). For the preparation of 4-nitro-phenyl­cyanamide used in the synthesis of the title compound, see: Crutchley & Naklicki (1989).graphic file with name e-68-0m232-scheme1.jpg

Experimental  

Crystal data  

  • [Cd(C7H4N3O2)2(C3H7NO)2]

  • M r = 582.87

  • Triclinic, Inline graphic

  • a = 5.6070 (11) Å

  • b = 9.811 (2) Å

  • c = 11.679 (2) Å

  • α = 67.44 (3)°

  • β = 81.93 (3)°

  • γ = 84.28 (3)°

  • V = 586.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 298 K

  • 0.45 × 0.10 × 0.08 mm

Data collection  

  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002) T min = 0.887, T max = 0.923

  • 6589 measured reflections

  • 3150 independent reflections

  • 3038 reflections with I > 2σ(I)

  • R int = 0.066

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.114

  • S = 1.11

  • 3150 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812001924/hy2496sup1.cif

e-68-0m232-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001924/hy2496Isup2.hkl

e-68-0m232-Isup2.hkl (154.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1i 2.287 (3)
Cd1—O3 2.347 (3)
Cd1—N2 2.383 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Isfahan University of Technology.

supplementary crystallographic information

Comment

Phenylcyanmide ligands can act as monodentate, bidentate and also as bridging ligands (Crutchley, 2001). In the bridging mode, the cyanamido group (NCN) is coordinated in an end-to-end mode, forming polynuclear complexes (Ainscough et al., 1991; Chiniforoshan et al., 2009, 2010; Escuer et al., 2004).

Following our work with this family of ligands, we report here the synthesis and crystal structure of a cadmium(II) coordination polymer of 4-nitro-phenylcyanamide ligand (Crutchley & Naklicki, 1989). The asymmetric unit of the title compound is shown in Fig. 1. In the title compound, the CdII atom lies on an inversion center and has a distorted octahedral geometry (Fig. 2, Table 1). The coordination environment consists of four N atoms from 4-nitro-phenylcyanamide ligands in the equatorial plane and two O atoms from DMF molecules in the axial positions. The one-dimensional structure of the title compound is shown in Fig. 2.

Experimental

4-Nitrophenylcynamide (Crutchley & Naklicki, 1989) (0.163 g, 1 mmol) was dissolved in methanol (25 ml) and was added slowly to a solution of cadmium(II) acetate (0.133 g, 0.5 mmol) in methanol (25 ml). The mixture was stirred for 3 hrs. The resulting solid was filtered off. Yellow needles of the title compound were obtained by n-hexane diffusion into a DMF solution of the title compound after 4 weeks.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

The one-dimensional polymeric structure of the title compound. [Symmetry codes: (i) 1-x, 2-y, -z; (ii) -1+x, y, z; (iii) -x, 2-y, -z; (iv) 1+x, y, z.]

Crystal data

[Cd(C7H4N3O2)2(C3H7NO)2] Z = 1
Mr = 582.87 F(000) = 294
Triclinic, P1 Dx = 1.650 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.6070 (11) Å Cell parameters from 3150 reflections
b = 9.811 (2) Å θ = 2.3–29.2°
c = 11.679 (2) Å µ = 0.98 mm1
α = 67.44 (3)° T = 298 K
β = 81.93 (3)° Needle, yellow
γ = 84.28 (3)° 0.45 × 0.10 × 0.08 mm
V = 586.7 (2) Å3

Data collection

Stoe IPDS 2T diffractometer 3150 independent reflections
Radiation source: fine-focus sealed tube 3038 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.066
ω scans θmax = 29.2°, θmin = 2.3°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002) h = −7→7
Tmin = 0.887, Tmax = 0.923 k = −13→13
6589 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.308P] where P = (Fo2 + 2Fc2)/3
3150 reflections (Δ/σ)max < 0.001
162 parameters Δρmax = 0.82 e Å3
0 restraints Δρmin = −0.89 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.0000 1.0000 0.0000 0.03092 (12)
O1 −0.1591 (9) 0.2034 (5) 0.4718 (4) 0.0897 (14)
O2 0.1354 (7) 0.1984 (4) 0.5719 (3) 0.0705 (10)
O3 0.0654 (5) 1.1593 (3) 0.0984 (3) 0.0493 (6)
N1 0.6524 (5) 0.9163 (3) 0.1262 (3) 0.0404 (6)
N2 0.2627 (5) 0.8176 (3) 0.1293 (3) 0.0362 (5)
N3 0.0180 (6) 0.2570 (4) 0.4842 (3) 0.0511 (8)
N4 0.3441 (5) 1.1798 (4) 0.2129 (3) 0.0417 (6)
C1 0.2102 (5) 0.6769 (3) 0.2158 (3) 0.0326 (6)
C2 0.3446 (6) 0.6018 (4) 0.3172 (3) 0.0392 (7)
H2 0.4765 0.6457 0.3264 0.047*
C3 0.2838 (7) 0.4640 (4) 0.4033 (3) 0.0437 (7)
H3 0.3748 0.4149 0.4694 0.052*
C4 0.0864 (6) 0.4002 (4) 0.3899 (3) 0.0387 (7)
C5 −0.0458 (6) 0.4682 (4) 0.2903 (4) 0.0446 (8)
H5 −0.1761 0.4225 0.2818 0.053*
C6 0.0172 (6) 0.6057 (4) 0.2026 (4) 0.0413 (7)
H6 −0.0697 0.6511 0.1344 0.050*
C7 0.4701 (5) 0.8656 (4) 0.1296 (3) 0.0338 (6)
C8 0.1668 (6) 1.1147 (4) 0.1947 (4) 0.0412 (7)
H8 0.1137 1.0288 0.2590 0.049*
C9 0.4414 (9) 1.3125 (5) 0.1153 (5) 0.0584 (10)
H9A 0.6050 1.2913 0.0873 0.088*
H9B 0.4371 1.3892 0.1476 0.088*
H9C 0.3461 1.3444 0.0466 0.088*
C10 0.4716 (9) 1.1095 (6) 0.3235 (5) 0.0598 (11)
H10A 0.3882 1.0246 0.3806 0.090*
H10B 0.4778 1.1784 0.3631 0.090*
H10C 0.6327 1.0793 0.2994 0.090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01969 (14) 0.03075 (16) 0.03821 (18) −0.00441 (9) −0.00930 (10) −0.00556 (12)
O1 0.092 (3) 0.066 (2) 0.089 (3) −0.048 (2) −0.027 (2) 0.011 (2)
O2 0.073 (2) 0.0528 (18) 0.0584 (19) −0.0116 (16) −0.0145 (16) 0.0133 (15)
O3 0.0510 (14) 0.0441 (14) 0.0569 (16) −0.0031 (11) −0.0226 (12) −0.0175 (12)
N1 0.0274 (11) 0.0406 (14) 0.0439 (15) −0.0065 (10) −0.0072 (10) −0.0035 (12)
N2 0.0253 (11) 0.0335 (13) 0.0425 (14) −0.0060 (9) −0.0082 (10) −0.0037 (11)
N3 0.0499 (17) 0.0391 (16) 0.0529 (18) −0.0092 (13) −0.0037 (14) −0.0038 (14)
N4 0.0381 (13) 0.0435 (15) 0.0451 (15) −0.0046 (11) −0.0100 (11) −0.0159 (13)
C1 0.0256 (12) 0.0321 (14) 0.0362 (14) −0.0014 (10) −0.0073 (10) −0.0072 (11)
C2 0.0347 (14) 0.0401 (16) 0.0398 (16) −0.0078 (12) −0.0126 (12) −0.0075 (13)
C3 0.0431 (17) 0.0400 (17) 0.0389 (17) −0.0069 (13) −0.0139 (13) −0.0003 (13)
C4 0.0380 (15) 0.0302 (14) 0.0436 (17) −0.0045 (11) −0.0024 (13) −0.0092 (13)
C5 0.0341 (15) 0.0359 (16) 0.059 (2) −0.0078 (12) −0.0133 (14) −0.0081 (15)
C6 0.0332 (14) 0.0350 (15) 0.0507 (19) −0.0046 (11) −0.0181 (13) −0.0052 (14)
C7 0.0256 (12) 0.0349 (14) 0.0340 (14) 0.0007 (10) −0.0073 (10) −0.0045 (11)
C8 0.0410 (16) 0.0386 (16) 0.0467 (18) −0.0055 (13) −0.0073 (13) −0.0172 (14)
C9 0.059 (2) 0.054 (2) 0.060 (2) −0.0214 (19) −0.0045 (19) −0.015 (2)
C10 0.056 (2) 0.072 (3) 0.056 (2) 0.001 (2) −0.0242 (19) −0.024 (2)

Geometric parameters (Å, º)

Cd1—N1i 2.287 (3) C2—C3 1.381 (5)
Cd1—O3 2.347 (3) C2—H2 0.9300
Cd1—N2 2.383 (3) C3—C4 1.380 (5)
O1—N3 1.219 (5) C3—H3 0.9300
O2—N3 1.214 (5) C4—C5 1.377 (5)
O3—C8 1.238 (5) C5—C6 1.388 (5)
N1—C7 1.170 (4) C5—H5 0.9300
N1—Cd1ii 2.287 (3) C6—H6 0.9300
N2—C7 1.299 (4) C8—H8 0.9300
N2—C1 1.392 (4) C9—H9A 0.9600
N3—C4 1.461 (4) C9—H9B 0.9600
N4—C8 1.316 (4) C9—H9C 0.9600
N4—C9 1.456 (5) C10—H10A 0.9600
N4—C10 1.460 (5) C10—H10B 0.9600
C1—C6 1.401 (4) C10—H10C 0.9600
C1—C2 1.409 (4)
N1i—Cd1—N1iii 180.000 (1) C3—C2—H2 119.5
N1i—Cd1—O3 86.19 (12) C1—C2—H2 119.5
N1iii—Cd1—O3 93.81 (12) C4—C3—C2 119.2 (3)
N1i—Cd1—O3iv 93.81 (12) C4—C3—H3 120.4
N1iii—Cd1—O3iv 86.19 (12) C2—C3—H3 120.4
O3—Cd1—O3iv 180.00 (10) C5—C4—C3 121.5 (3)
N1i—Cd1—N2iv 95.72 (10) C5—C4—N3 119.8 (3)
N1iii—Cd1—N2iv 84.28 (10) C3—C4—N3 118.7 (3)
O3—Cd1—N2iv 90.74 (10) C4—C5—C6 119.4 (3)
O3iv—Cd1—N2iv 89.26 (10) C4—C5—H5 120.3
N1i—Cd1—N2 84.28 (10) C6—C5—H5 120.3
N1iii—Cd1—N2 95.72 (10) C5—C6—C1 120.8 (3)
O3—Cd1—N2 89.26 (10) C5—C6—H6 119.6
O3iv—Cd1—N2 90.74 (10) C1—C6—H6 119.6
N2iv—Cd1—N2 180.0 N1—C7—N2 176.4 (3)
C8—O3—Cd1 121.5 (2) O3—C8—N4 124.9 (4)
C7—N1—Cd1ii 142.5 (3) O3—C8—H8 117.6
C7—N2—C1 116.9 (3) N4—C8—H8 117.6
C7—N2—Cd1 113.9 (2) N4—C9—H9A 109.5
C1—N2—Cd1 128.50 (19) N4—C9—H9B 109.5
O2—N3—O1 123.1 (4) H9A—C9—H9B 109.5
O2—N3—C4 119.1 (3) N4—C9—H9C 109.5
O1—N3—C4 117.7 (4) H9A—C9—H9C 109.5
C8—N4—C9 120.7 (3) H9B—C9—H9C 109.5
C8—N4—C10 120.8 (4) N4—C10—H10A 109.5
C9—N4—C10 117.9 (4) N4—C10—H10B 109.5
N2—C1—C6 119.5 (3) H10A—C10—H10B 109.5
N2—C1—C2 122.5 (3) N4—C10—H10C 109.5
C6—C1—C2 118.0 (3) H10A—C10—H10C 109.5
C3—C2—C1 121.1 (3) H10B—C10—H10C 109.5
N1i—Cd1—O3—C8 −96.1 (3) C6—C1—C2—C3 −1.9 (5)
N1iii—Cd1—O3—C8 83.9 (3) C1—C2—C3—C4 −0.7 (6)
N2iv—Cd1—O3—C8 168.2 (3) C2—C3—C4—C5 2.5 (6)
N2—Cd1—O3—C8 −11.8 (3) C2—C3—C4—N3 −177.6 (4)
N1i—Cd1—N2—C7 35.1 (3) O2—N3—C4—C5 −179.7 (4)
N1iii—Cd1—N2—C7 −144.9 (3) O1—N3—C4—C5 −1.2 (6)
O3—Cd1—N2—C7 −51.2 (3) O2—N3—C4—C3 0.4 (6)
O3iv—Cd1—N2—C7 128.8 (3) O1—N3—C4—C3 178.9 (5)
N1i—Cd1—N2—C1 −155.1 (3) C3—C4—C5—C6 −1.5 (6)
N1iii—Cd1—N2—C1 24.9 (3) N3—C4—C5—C6 178.6 (4)
O3—Cd1—N2—C1 118.6 (3) C4—C5—C6—C1 −1.2 (6)
O3iv—Cd1—N2—C1 −61.4 (3) N2—C1—C6—C5 −177.2 (3)
C7—N2—C1—C6 −165.8 (3) C2—C1—C6—C5 2.9 (5)
Cd1—N2—C1—C6 24.6 (5) Cd1—O3—C8—N4 131.9 (3)
C7—N2—C1—C2 14.0 (5) C9—N4—C8—O3 −1.7 (6)
Cd1—N2—C1—C2 −155.5 (3) C10—N4—C8—O3 −172.6 (4)
N2—C1—C2—C3 178.2 (3)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2496).

References

  1. Ainscough, E. W., Baker, E. N., Brader, M. L. & Brodie, A. M. (1991). J. Chem. Soc. Dalton Trans. pp. 1243–1249.
  2. Chiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386. [DOI] [PMC free article] [PubMed]
  3. Chiniforoshan, H., Shirinfar, B., Jalilpour, S. & Khavasi, H. R. (2010). Acta Cryst. E66, m331. [DOI] [PMC free article] [PubMed]
  4. Crutchley, R. J. (2001). Coord. Chem. Rev. 219, 125–155.
  5. Crutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955–1958.
  6. Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409–1417.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812001924/hy2496sup1.cif

e-68-0m232-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001924/hy2496Isup2.hkl

e-68-0m232-Isup2.hkl (154.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES