Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 4;68(Pt 3):m239–m240. doi: 10.1107/S1600536812003625

Bis[(2-chloro-4-fluoro­benz­yl)triphenyl­phospho­nium] bis­(1,2,5-thia­diazole-3,4-dithiol­ato)nickelate(II)

Zhou-Hua Zeng a, Shui-Bin Yang a,*
PMCID: PMC3297212  PMID: 22412402

Abstract

The title ion-pair complex, (C25H20ClFP)2[Ni(C2N2S3)2], was obtained by the direct reaction of (4-F,2-ClBzTPP)+·Br [4-F,2-ClBzTPP+ is (2-chloro-4-fluoro­benz­yl)triphenyl­phos­pho­nium], NiCl2·6H2O and Na2tdas (tdas2− is 1,2,5-thia­diazole-3,4-dithiol­ate) in methanol. The asymmetric unit of the title structure comprises one (4-F,2-ClBzTPP)+ cation and half of an [Ni(tdas)2]2− complex anion, with the NiII ion situated on a center of symmetry, leading to a slightly distorted square-planar coordination of the latter. In the cation, the tetra­hedral angles around the P atom are nearly undistorted. In the crystal, the cations and anions are linked by C—H⋯S, C—H⋯N and C—H⋯Cl hydrogen bonds.

Related literature  

For background to complexes containing the [Ni(maleo­nitrile­dithiol­ate)2]2− anion, see: Chen et al. (2010); Hou et al. (2008); Ni et al. (2005); Ren et al. (2002); Robertson & Cronin (2002); Xie et al. (2002); Zhou et al. (2011). For details of other square-planar Ni(1,2,5-thia­diazole-3,4-dithiol­ate)2 complexes, see: Awaga et al. (1994); Yamochi et al. (2001); Okuno et al. (2003); Ni et al. (2004); Zuo et al. (2009).graphic file with name e-68-0m239-scheme1.jpg

Experimental  

Crystal data  

  • (C25H20ClFP)2[Ni(C2N2S3)2]

  • M r = 1166.81

  • Triclinic, Inline graphic

  • a = 9.4447 (11) Å

  • b = 12.1385 (15) Å

  • c = 13.1309 (16) Å

  • α = 71.447 (1)°

  • β = 83.601 (2)°

  • γ = 68.691 (2)°

  • V = 1329.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 291 K

  • 0.19 × 0.15 × 0.11 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.861, T max = 0.916

  • 9694 measured reflections

  • 4652 independent reflections

  • 3807 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.118

  • S = 1.00

  • 4652 reflections

  • 322 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003625/wm2587sup1.cif

e-68-0m239-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003625/wm2587Isup2.hkl

e-68-0m239-Isup2.hkl (227.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—S1 2.1842 (9)
Ni1—S2 2.1966 (9)
S1i—Ni1—S2 86.82 (3)
S1—Ni1—S2 93.18 (3)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯S1ii 0.97 2.71 3.635 (4) 160
C9—H9B⋯Cl1 0.97 2.66 3.129 (4) 110
C24—H24⋯N2iii 0.93 2.61 3.401 (7) 143

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Department of Education of Hubei Province (grant No. D20082705) for financial support.

supplementary crystallographic information

Comment

Transition metal complexes of bis(1,2-ditholene) and derivatives thereof have been extensively studied due to their potential applications in molecular materials showing superconducting, magnetic or optical properties (Robertson & Cronin, 2002; Ni et al., 2005; Ren et al., 2002). In recent years, much attention has been paid to the study of ion-pair complexes containing the [Ni(mnt)2]n- (mnt is maleonitriledithiolate, n is 1 or 2) anion that possesses spin bistability with potential application as a molecular switch, in data storage or in displays (Chen et al., 2010; Hou et al., 2008; Xie et al., 2002; Zhou et al., 2011), while there is only few information available on complexes containing the [M(tdas)2]n- (tdas is 1,2,5-thiadiazole-3,4-dithiolate, n is 1 or 2; M is a transition metal) anion (Awaga et al., 1994; Yamochi et al., 2001; Okuno et al., 2003). Substantial efforts have been devoted for finding more suitable counter cations to tune the stacking in the crystal structures containing [M(tdas)2]n- anions and also to obtain materials with interesting properties (Ni et al., 2004; Zuo et al., 2009). Substituted benzyl triphenylphosphonium as a cation has been proved to be suitable for this purpose. In this article we report on the preparation and crystal structure of the new ion-pair complex, [4-F,2-ClBzTPP]2[Ni(tdas)2] (I).

The molecular structure of (I) is shown in Fig. 1. There are one (2-chloro-4-fluorobenzyl)triphenylphosphonium and half of an [Ni(tdas)2]2- anion in the asymmetric unit of (I). The nickel(II) ion of the complex [Ni(tdas)2]2- anion is situated on a center of symmetry within a slightly distorted square-planar coordination. The Ni1—S1 and Ni1—S2 bond lengths are 2.1842 (9) Å and 2.1966 (9) Å, and the S1—Ni1—S2 bond angle within the five-membered metalla ring is 93.18 (3)°, similar to those observed for other structures with an [Ni(tdas)2]2- anion (Okuno et al., 2003; Zuo et al., 2009). In the cation, the deviations of the F and Cl atoms from the C3—C8 benzene ring are 0.082 (2)Å and -0.029 (2) Å, respectively.

C—H···S, C—H···N and C—H···Cl hydrogen bonds between the anion and cation consolidate the crystal packing (Fig. 2, Table 2).

Experimental

The title ion-pair complex was prepared by the direct reaction of 1:2:2 mol equiv. of NiCl2.6H2O, Na2tdas and (2-chloro-4-fluorobenzyl)triphenylphosphonium bromide in methanol. A brown product was obtained and purified through recrystallization from a mixed solution of methanol and water (yield: 86%). Brown block-sheped single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent at room temperature within 3 weeks.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and atoms displayed with displacement ellipsoids at the 30% probability level for all non-H atoms. The non-labelled atoms are generated by the inversion symmetry operation: -x + 1, -y + 1, -z.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed approximately down the a axis, showing the network of molecules connected by non-classical hydrogen bonds (dashed lines).

Crystal data

(C25H20ClFP)2[Ni(C2N2S3)2] Z = 1
Mr = 1166.81 F(000) = 598
Triclinic, P1 Dx = 1.457 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.4447 (11) Å Cell parameters from 3884 reflections
b = 12.1385 (15) Å θ = 2.3–26.0°
c = 13.1309 (16) Å µ = 0.81 mm1
α = 71.447 (1)° T = 291 K
β = 83.601 (2)° Block, brown
γ = 68.691 (2)° 0.19 × 0.15 × 0.11 mm
V = 1329.6 (3) Å3

Data collection

Bruker SMART CCD diffractometer 4652 independent reflections
Radiation source: fine-focus sealed tube 3807 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
φ and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −11→10
Tmin = 0.861, Tmax = 0.916 k = −14→14
9694 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0368P)2 + 1.988P] where P = (Fo2 + 2Fc2)/3
4652 reflections (Δ/σ)max < 0.001
322 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.5000 0.0000 0.03811 (17)
S1 0.58693 (12) 0.34739 (9) −0.07028 (7) 0.0552 (3)
S2 0.42586 (13) 0.38755 (9) 0.14777 (8) 0.0618 (3)
S3 0.49400 (15) 0.04337 (10) 0.12386 (9) 0.0728 (3)
Cl1 0.70371 (13) 0.46088 (10) 0.42942 (8) 0.0685 (3)
F1 0.5385 (4) 0.1177 (3) 0.4145 (3) 0.1061 (10)
N1 0.5634 (4) 0.1203 (3) 0.0147 (3) 0.0644 (9)
N2 0.4341 (4) 0.1508 (3) 0.1854 (3) 0.0654 (9)
P1 0.95727 (10) 0.22890 (8) 0.69433 (7) 0.0408 (2)
C1 0.5392 (4) 0.2291 (3) 0.0242 (3) 0.0459 (8)
C2 0.4655 (4) 0.2480 (3) 0.1213 (3) 0.0475 (8)
C3 0.6640 (4) 0.3250 (3) 0.4940 (3) 0.0505 (8)
C4 0.6126 (5) 0.2753 (4) 0.4295 (3) 0.0632 (11)
H4 0.5992 0.3136 0.3559 0.076*
C5 0.5826 (5) 0.1690 (4) 0.4779 (4) 0.0684 (11)
C6 0.5948 (5) 0.1121 (4) 0.5864 (4) 0.0680 (11)
H6 0.5686 0.0418 0.6172 0.082*
C7 0.6469 (4) 0.1618 (4) 0.6486 (3) 0.0544 (9)
H7 0.6565 0.1236 0.7224 0.065*
C8 0.6859 (4) 0.2682 (3) 0.6042 (3) 0.0436 (8)
C9 0.7547 (4) 0.3131 (3) 0.6737 (3) 0.0456 (8)
H9A 0.7042 0.3038 0.7429 0.055*
H9B 0.7376 0.4006 0.6404 0.055*
C10 0.8961 (5) 0.0449 (4) 0.8608 (3) 0.0588 (10)
H10 0.8138 0.1087 0.8753 0.071*
C11 0.9250 (6) −0.0750 (4) 0.9244 (3) 0.0738 (12)
H11 0.8615 −0.0925 0.9819 0.089*
C12 1.0475 (6) −0.1698 (5) 0.9035 (4) 0.0797 (14)
H12 1.0651 −0.2511 0.9461 0.096*
C13 1.1436 (5) −0.1448 (4) 0.8202 (4) 0.0717 (12)
H13 1.2272 −0.2089 0.8075 0.086*
C14 1.1167 (4) −0.0246 (3) 0.7551 (3) 0.0553 (9)
H14 1.1824 −0.0076 0.6990 0.066*
C15 0.9911 (4) 0.0703 (3) 0.7741 (3) 0.0454 (8)
C16 0.9476 (5) 0.3957 (4) 0.8019 (3) 0.0583 (10)
H16 0.8426 0.4258 0.7933 0.070*
C17 1.0149 (6) 0.4456 (5) 0.8554 (4) 0.0757 (13)
H17 0.9553 0.5092 0.8832 0.091*
C18 1.1704 (6) 0.4007 (5) 0.8674 (4) 0.0777 (13)
H18 1.2152 0.4347 0.9032 0.093*
C19 1.2600 (5) 0.3067 (5) 0.8274 (4) 0.0760 (13)
H19 1.3650 0.2777 0.8352 0.091*
C20 1.1938 (5) 0.2558 (4) 0.7757 (3) 0.0673 (11)
H20 1.2540 0.1904 0.7501 0.081*
C21 1.0368 (4) 0.3015 (3) 0.7614 (3) 0.0475 (8)
C22 1.1227 (4) 0.3129 (3) 0.5183 (3) 0.0559 (9)
H22 1.1355 0.3625 0.5553 0.067*
C23 1.1813 (5) 0.3194 (4) 0.4163 (4) 0.0721 (12)
H23 1.2353 0.3724 0.3855 0.087*
C24 1.1614 (5) 0.2499 (5) 0.3607 (4) 0.0773 (14)
H24 1.2011 0.2559 0.2919 0.093*
C25 1.0820 (5) 0.1692 (4) 0.4052 (3) 0.0663 (11)
H25 1.0678 0.1221 0.3662 0.080*
C26 1.0242 (4) 0.1596 (3) 0.5083 (3) 0.0524 (9)
H26 0.9721 0.1052 0.5394 0.063*
C27 1.0450 (4) 0.2327 (3) 0.5651 (3) 0.0439 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0364 (3) 0.0470 (4) 0.0314 (3) −0.0127 (3) 0.0052 (2) −0.0163 (2)
S1 0.0713 (6) 0.0579 (6) 0.0441 (5) −0.0277 (5) 0.0236 (4) −0.0269 (4)
S2 0.0861 (7) 0.0503 (5) 0.0480 (5) −0.0237 (5) 0.0288 (5) −0.0230 (4)
S3 0.0978 (9) 0.0573 (6) 0.0710 (7) −0.0355 (6) 0.0188 (6) −0.0257 (5)
Cl1 0.0798 (7) 0.0599 (6) 0.0587 (6) −0.0315 (5) −0.0064 (5) 0.0020 (5)
F1 0.123 (3) 0.127 (3) 0.108 (2) −0.064 (2) −0.0197 (19) −0.056 (2)
N1 0.085 (2) 0.055 (2) 0.061 (2) −0.0268 (18) 0.0149 (17) −0.0296 (16)
N2 0.082 (2) 0.057 (2) 0.059 (2) −0.0284 (18) 0.0207 (17) −0.0200 (16)
P1 0.0422 (5) 0.0435 (5) 0.0385 (4) −0.0172 (4) 0.0047 (4) −0.0137 (4)
C1 0.0465 (19) 0.048 (2) 0.0452 (19) −0.0146 (16) 0.0030 (15) −0.0204 (16)
C2 0.0447 (19) 0.054 (2) 0.0430 (18) −0.0168 (16) 0.0083 (15) −0.0157 (16)
C3 0.046 (2) 0.054 (2) 0.050 (2) −0.0155 (17) 0.0012 (16) −0.0157 (17)
C4 0.058 (2) 0.079 (3) 0.052 (2) −0.019 (2) −0.0064 (18) −0.022 (2)
C5 0.063 (3) 0.081 (3) 0.077 (3) −0.029 (2) −0.010 (2) −0.036 (3)
C6 0.066 (3) 0.067 (3) 0.083 (3) −0.037 (2) −0.003 (2) −0.021 (2)
C7 0.050 (2) 0.061 (2) 0.054 (2) −0.0263 (18) 0.0026 (17) −0.0123 (18)
C8 0.0367 (17) 0.0486 (19) 0.0444 (18) −0.0121 (15) 0.0041 (14) −0.0168 (15)
C9 0.0443 (19) 0.050 (2) 0.0436 (18) −0.0154 (16) 0.0045 (15) −0.0182 (16)
C10 0.059 (2) 0.069 (3) 0.044 (2) −0.024 (2) 0.0023 (17) −0.0088 (18)
C11 0.083 (3) 0.078 (3) 0.052 (2) −0.040 (3) −0.002 (2) 0.006 (2)
C12 0.098 (4) 0.063 (3) 0.068 (3) −0.037 (3) −0.025 (3) 0.011 (2)
C13 0.075 (3) 0.056 (3) 0.073 (3) −0.013 (2) −0.019 (2) −0.010 (2)
C14 0.053 (2) 0.054 (2) 0.056 (2) −0.0165 (18) −0.0012 (17) −0.0143 (18)
C15 0.0471 (19) 0.052 (2) 0.0387 (17) −0.0216 (16) −0.0003 (15) −0.0098 (15)
C16 0.059 (2) 0.064 (2) 0.060 (2) −0.022 (2) 0.0012 (18) −0.029 (2)
C17 0.083 (3) 0.083 (3) 0.077 (3) −0.032 (3) −0.001 (2) −0.041 (3)
C18 0.094 (4) 0.091 (3) 0.068 (3) −0.050 (3) −0.013 (3) −0.025 (3)
C19 0.066 (3) 0.088 (3) 0.081 (3) −0.029 (3) −0.018 (2) −0.027 (3)
C20 0.054 (2) 0.074 (3) 0.074 (3) −0.015 (2) −0.012 (2) −0.027 (2)
C21 0.052 (2) 0.052 (2) 0.0408 (18) −0.0230 (17) −0.0022 (15) −0.0108 (15)
C22 0.060 (2) 0.051 (2) 0.058 (2) −0.0253 (19) 0.0099 (18) −0.0135 (18)
C23 0.072 (3) 0.073 (3) 0.068 (3) −0.038 (2) 0.025 (2) −0.011 (2)
C24 0.075 (3) 0.085 (3) 0.055 (2) −0.020 (3) 0.029 (2) −0.016 (2)
C25 0.071 (3) 0.072 (3) 0.053 (2) −0.016 (2) 0.013 (2) −0.030 (2)
C26 0.054 (2) 0.057 (2) 0.048 (2) −0.0209 (18) 0.0103 (16) −0.0185 (17)
C27 0.0429 (18) 0.0435 (19) 0.0437 (18) −0.0155 (15) 0.0081 (14) −0.0132 (15)

Geometric parameters (Å, º)

Ni1—S1i 2.1842 (9) C10—H10 0.9300
Ni1—S1 2.1842 (9) C11—C12 1.379 (7)
Ni1—S2i 2.1966 (9) C11—H11 0.9300
Ni1—S2 2.1966 (9) C12—C13 1.371 (7)
S1—C1 1.736 (4) C12—H12 0.9300
S2—C2 1.737 (4) C13—C14 1.381 (6)
S3—N2 1.644 (3) C13—H13 0.9300
S3—N1 1.655 (3) C14—C15 1.386 (5)
Cl1—C3 1.752 (4) C14—H14 0.9300
F1—C5 1.361 (5) C16—C21 1.373 (5)
N1—C1 1.300 (4) C16—C17 1.384 (5)
N2—C2 1.324 (5) C16—H16 0.9300
P1—C27 1.798 (3) C17—C18 1.376 (7)
P1—C21 1.799 (3) C17—H17 0.9300
P1—C15 1.802 (4) C18—C19 1.370 (7)
P1—C9 1.816 (3) C18—H18 0.9300
C1—C2 1.427 (5) C19—C20 1.368 (6)
C3—C8 1.393 (5) C19—H19 0.9300
C3—C4 1.394 (5) C20—C21 1.394 (5)
C4—C5 1.361 (6) C20—H20 0.9300
C4—H4 0.9300 C22—C27 1.379 (5)
C5—C6 1.368 (6) C22—C23 1.380 (6)
C6—C7 1.375 (5) C22—H22 0.9300
C6—H6 0.9300 C23—C24 1.349 (6)
C7—C8 1.401 (5) C23—H23 0.9300
C7—H7 0.9300 C24—C25 1.391 (6)
C8—C9 1.503 (5) C24—H24 0.9300
C9—H9A 0.9700 C25—C26 1.388 (5)
C9—H9B 0.9700 C25—H25 0.9300
C10—C11 1.371 (6) C26—C27 1.400 (5)
C10—C15 1.395 (5) C26—H26 0.9300
S1i—Ni1—S1 180.00 (4) C10—C11—H11 119.8
S1i—Ni1—S2i 93.18 (3) C12—C11—H11 119.8
S1—Ni1—S2i 86.82 (3) C13—C12—C11 120.3 (4)
S1i—Ni1—S2 86.82 (3) C13—C12—H12 119.9
S1—Ni1—S2 93.18 (3) C11—C12—H12 119.9
S2i—Ni1—S2 180.00 (8) C12—C13—C14 120.3 (4)
C1—S1—Ni1 103.26 (11) C12—C13—H13 119.8
C2—S2—Ni1 102.65 (12) C14—C13—H13 119.8
N2—S3—N1 98.37 (16) C13—C14—C15 119.4 (4)
C1—N1—S3 106.9 (3) C13—C14—H14 120.3
C2—N2—S3 106.6 (3) C15—C14—H14 120.3
C27—P1—C21 109.46 (16) C14—C15—C10 120.0 (3)
C27—P1—C15 109.54 (16) C14—C15—P1 120.6 (3)
C21—P1—C15 109.54 (16) C10—C15—P1 119.2 (3)
C27—P1—C9 108.25 (16) C21—C16—C17 119.6 (4)
C21—P1—C9 109.81 (16) C21—C16—H16 120.2
C15—P1—C9 110.22 (16) C17—C16—H16 120.2
N1—C1—C2 114.5 (3) C18—C17—C16 119.8 (4)
N1—C1—S1 125.5 (3) C18—C17—H17 120.1
C2—C1—S1 120.1 (3) C16—C17—H17 120.1
N2—C2—C1 113.6 (3) C19—C18—C17 120.9 (4)
N2—C2—S2 125.7 (3) C19—C18—H18 119.6
C1—C2—S2 120.7 (3) C17—C18—H18 119.6
C8—C3—C4 121.8 (4) C20—C19—C18 119.5 (4)
C8—C3—Cl1 121.3 (3) C20—C19—H19 120.2
C4—C3—Cl1 116.8 (3) C18—C19—H19 120.2
C5—C4—C3 117.8 (4) C19—C20—C21 120.3 (4)
C5—C4—H4 121.1 C19—C20—H20 119.8
C3—C4—H4 121.1 C21—C20—H20 119.8
F1—C5—C4 117.8 (4) C16—C21—C20 119.8 (4)
F1—C5—C6 119.0 (4) C16—C21—P1 122.2 (3)
C4—C5—C6 123.2 (4) C20—C21—P1 117.9 (3)
C5—C6—C7 118.1 (4) C27—C22—C23 119.8 (4)
C5—C6—H6 120.9 C27—C22—H22 120.1
C7—C6—H6 120.9 C23—C22—H22 120.1
C6—C7—C8 122.0 (4) C24—C23—C22 120.9 (4)
C6—C7—H7 119.0 C24—C23—H23 119.6
C8—C7—H7 119.0 C22—C23—H23 119.6
C3—C8—C7 116.9 (3) C23—C24—C25 120.7 (4)
C3—C8—C9 122.8 (3) C23—C24—H24 119.7
C7—C8—C9 120.2 (3) C25—C24—H24 119.7
C8—C9—P1 112.3 (2) C26—C25—C24 119.4 (4)
C8—C9—H9A 109.2 C26—C25—H25 120.3
P1—C9—H9A 109.2 C24—C25—H25 120.3
C8—C9—H9B 109.2 C25—C26—C27 119.4 (4)
P1—C9—H9B 109.2 C25—C26—H26 120.3
H9A—C9—H9B 107.9 C27—C26—H26 120.3
C11—C10—C15 119.5 (4) C22—C27—C26 119.8 (3)
C11—C10—H10 120.3 C22—C27—P1 120.8 (3)
C15—C10—H10 120.3 C26—C27—P1 119.2 (3)
C10—C11—C12 120.4 (4)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9A···S1ii 0.97 2.71 3.635 (4) 160
C9—H9B···Cl1 0.97 2.66 3.129 (4) 110
C24—H24···N2iii 0.93 2.61 3.401 (7) 143

Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2587).

References

  1. Awaga, K., Okuno, T., Maruyama, Y., Kobayashi, A., Kobayashi, H., Schenk, S. & Underhill, A. E. (1994). Inorg. Chem. 33, 5598–5600.
  2. Bruker (2004). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, X., Zou, H. L., Lin, J. H., Huang, Q., Zuo, H. R., Zhou, J. R., Ni, C. L. & Hu, X. L. (2010). J. Mol. Struct. 981, 139–145.
  4. Hou, Y., Ni, C. L., Zhou, J. R., Liu, X. P., Yu, L. L. & Yang, L. M. (2008). Synth. Met. 158, 379–382.
  5. Ni, C. L., Dang, D. B., Ni, Z. P., Li, Y. Z., Xie, J. L., Meng, Q. J. & Yao, Y. G. (2004). J. Coord. Chem. 57, 1529–1536.
  6. Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338. [DOI] [PubMed]
  7. Okuno, T., Kuwamoto, K., Fujita, W., Awaga, K. & Nakanishi, W. (2003). Polyhedron, 22, 2311–2315.
  8. Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S. & Hu, C. J. (2002). Inorg. Chem. 41, 5686–5692. [DOI] [PubMed]
  9. Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346–2347. [DOI] [PubMed]
  12. Yamochi, H., Sogoshi, N., Simizu, Y., Saito, G. & Matsumoto, K. (2001). J. Mater. Chem. 11, 2216–2220.
  13. Zhou, J. R., Ni, C. L. & Hu, X. L. (2011). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 41, 8–14.
  14. Zuo, H. R., Tian, J., Chen, X., Huang, Q., Zhou, J. R., Liu, X. P., Ni, C. L. & Hu, X. L. (2009). J. Chem. Crystallogr. 39, 698–701.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003625/wm2587sup1.cif

e-68-0m239-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003625/wm2587Isup2.hkl

e-68-0m239-Isup2.hkl (227.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES