Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):m259. doi: 10.1107/S1600536812003418

(+)-Chlorido[(1,2,3,4-η;κP 2′)-2′-diphenyl­phosphanyl-2-diphenyl­phosphoryl-1,1′-binaphth­yl]rhodium(I) methanol monosolvate

Antje Meissner a, Carmen Selle a, Hans-Joachim Drexler a,*, Detlef Heller a
PMCID: PMC3297224  PMID: 22412414

Abstract

In the title complex, [RhCl(C44H32OP2)]·CH3OH, the RhI ion is coordinated by a naphthyl group of a partially oxidized 2,2′-bis­(diphenyl­phosphan­yl)-1,1′-binaphthyl (BINAP) ligand in a η4 mode, one P atom of the diphenyl­phosphanyl group and one Cl atom. The P=O group does not inter­act with the RhI ion but accepts an O—H⋯O hydrogen bond from the methanol solvent mol­ecule.

Related literature  

For general synthetic aspects of related compounds, see: Bunten et al. (2002). For related structures of rhodium complexes with BINAP and bis­phosphine diolefin, see: Fischer et al. (2012); Preetz (2009); Preetz et al. (2010); Tani et al. (1985).graphic file with name e-68-0m259-scheme1.jpg

Experimental  

Crystal data  

  • [RhCl(C44H32OP2)]·CH4O

  • M r = 809.04

  • Triclinic, Inline graphic

  • a = 9.2108 (18) Å

  • b = 9.7453 (19) Å

  • c = 11.354 (2) Å

  • α = 103.01 (3)°

  • β = 104.59 (3)°

  • γ = 105.09 (3)°

  • V = 905.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 200 K

  • 0.20 × 0.15 × 0.15 mm

Data collection  

  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002) T min = 0.787, T max = 0.953

  • 10887 measured reflections

  • 6247 independent reflections

  • 5695 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.043

  • S = 0.96

  • 6247 reflections

  • 462 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983), 2858 Friedel pairs

  • Flack parameter: −0.012 (17)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003418/hy2508sup1.cif

e-68-0m259-sup1.cif (34.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003418/hy2508Isup2.hkl

e-68-0m259-Isup2.hkl (305.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H51⋯O1i 0.82 1.95 2.755 (4) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Leibniz-Institut für Katalyse e.V. an der Universität Rostock.

supplementary crystallographic information

Comment

Ligand exchange between 1,5-cyclooctadiene (COD) and 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP, a chiral binaphthyl-based chelating diphosphine) in the complex [Rh(COD)(µ2-Cl)]2 has been investigated by Preetz (2009) and Bunten et al. (2002). When the reaction is carried out at room temperature, either in dichloromethane or toluene, the complex [Rh(BINAP)(µ2-Cl)]2 is formed in 99% yield. The title complex, [Rh(BINAP(O))Cl], containing monooxidized BINAP(O) was isolated from a solution of [Rh(BINAP)(µ2-Cl)]2 and methyl-(Z)-α-acetamidocinnamate (MAC) in MeOH, which contained obviously residual traces of oxygen. The molecular structure of [Rh(BINAP(O))Cl] is shown in Fig. 1.

In the title complex, the RhI atom is η4-coordinated to one of the binaphthyl moieties of the partially oxidized BINAP ligand but not to the O atom. Coordination to O atom is instead observed in the complex [Rh(BINAP(O))(CO)Cl] described by Bunten et al. (2002). This complex has a square-planar geometry with a CO ligand located trans to the O atom. The Rh—P distance of 2.1988 (10) Å in the title complex is by more than 0.1 Å shorter than that in the typical BINAP-rhodium complexes [2.304 (2)–2.335 (2) Å] (Preetz et al., 2010; Tani et al., 1985) and slightly shorter than in [Rh(BINAP(O))(CO)Cl] [2.242 (1) Å]. The Rh—C bond lengths, varying from 2.092 (3) to 2.497 (3) Å, are in the range of the known BINAP-rhodium complexes with benzene (2.226–2.241 Å) (Fischer et al., 2012). The Rh—Cl distance is 2.3222 (15) Å, comparable to that in [Rh(BINAP(O))(CO)Cl] [2.382 (1) Å] (Bunten et al., 2002). An O—H···O hydrogen bond between the methanol solvent molecule and the complex molecule is observed (Table 1).

Experimental

[Rh(COD)(µ2-Cl)]2 (0.03 g, 0.06 mmol) and BINAP (0.02 g, 0.03 mmol) were dissolved in tetrahydrofuran at room temperature under anaerobic conditions using standard schlenk-techniques. After stirring for 30 min, the solvent was removed under vacuum. The dark red colored residue was recystallized from CH2Cl2 to afford [Rh(BINAP)(µ2-Cl)]2.

[Rh(BINAP)(µ2-Cl)]2 (0.015 g, 0.01 mmol) and MAC (0.219 g, 1 mmol) were dissolved in 15 ml MeOH and stirred for 6 h under hydrogen. Crystals of the title compound were isolated after two days from the reaction solution, which contained residual traces of oxygen. 31P-NMR (300 MHz, THF-d8): δ 55.3 p.p.m. (d, JP—Rh = 198,3 Hz), δ 24.4 p.p.m.

Refinement

H atoms were placed in idealized positions and refined using a riding model, with C—H = 0.93 and 0.98 (CH), 0.96 (CH3) and O—H = 0.82 (OH) Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C, O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. H atoms and the solvent molecule MeOH have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[RhCl(C44H32OP2)]·CH4O Z = 1
Mr = 809.04 F(000) = 414
Triclinic, P1 Dx = 1.485 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.2108 (18) Å Cell parameters from 11752 reflections
b = 9.7453 (19) Å θ = 2.0–26.1°
c = 11.354 (2) Å µ = 0.67 mm1
α = 103.01 (3)° T = 200 K
β = 104.59 (3)° Prism, deep-purple
γ = 105.09 (3)° 0.20 × 0.15 × 0.15 mm
V = 905.0 (4) Å3

Data collection

Stoe IPDS-2 diffractometer 6247 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 5695 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 6.67 pixels mm-1 θmax = 25.6°, θmin = 2.0°
ω scans h = −11→11
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002) k = −11→11
Tmin = 0.787, Tmax = 0.953 l = −12→13
10887 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.006P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
6247 reflections Δρmax = 0.64 e Å3
462 parameters Δρmin = −0.34 e Å3
3 restraints Absolute structure: Flack (1983), 2858 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.012 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rh1 0.25876 (2) 0.03654 (2) 0.95095 (2) 0.01981 (8)
Cl1 0.46974 (12) 0.12625 (12) 1.14224 (10) 0.0319 (3)
P1 0.14437 (10) −0.16409 (9) 0.63082 (8) 0.0219 (2)
P2 0.32439 (10) 0.24664 (9) 0.90464 (8) 0.0199 (2)
O1 0.2049 (3) −0.0336 (2) 0.5902 (2) 0.0281 (6)
C1 0.1016 (4) −0.1239 (3) 0.7790 (3) 0.0189 (7)
C2 0.1186 (4) −0.2141 (3) 0.8623 (3) 0.0236 (8)
H2A 0.1757 −0.2850 0.8491 0.028*
C3 0.0725 (4) −0.1886 (4) 0.9697 (4) 0.0292 (9)
H3A 0.1113 −0.2306 1.0371 0.035*
C4 −0.0324 (4) −0.1050 (4) 0.9852 (3) 0.0249 (8)
C5 −0.1039 (4) −0.1040 (4) 1.0803 (3) 0.0336 (9)
H5A −0.0847 −0.1601 1.1351 0.040*
C6 −0.2012 (5) −0.0219 (4) 1.0936 (4) 0.0363 (10)
H6A −0.2492 −0.0228 1.1564 0.044*
C7 −0.2288 (5) 0.0639 (4) 1.0122 (4) 0.0367 (10)
H7A −0.2960 0.1193 1.0208 0.044*
C8 −0.1578 (4) 0.0671 (4) 0.9199 (3) 0.0283 (9)
H8A −0.1757 0.1260 0.8674 0.034*
C9 −0.0591 (4) −0.0169 (3) 0.9041 (3) 0.0207 (7)
C10 0.0330 (4) −0.0075 (4) 0.8172 (3) 0.0189 (8)
C11 0.0256 (4) 0.0962 (3) 0.7374 (3) 0.0164 (7)
C12 −0.1123 (4) 0.0643 (3) 0.6309 (3) 0.0197 (7)
C13 −0.2527 (4) −0.0571 (3) 0.5984 (3) 0.0241 (8)
H13A −0.2582 −0.1197 0.6492 0.029*
C14 −0.3792 (4) −0.0848 (4) 0.4955 (4) 0.0309 (10)
H14A −0.4715 −0.1644 0.4779 0.037*
C15 −0.3747 (4) 0.0046 (4) 0.4137 (4) 0.0301 (9)
H15A −0.4623 −0.0164 0.3419 0.036*
C16 −0.2399 (4) 0.1223 (4) 0.4416 (3) 0.0258 (8)
H16A −0.2358 0.1808 0.3874 0.031*
C17 −0.1071 (4) 0.1572 (4) 0.5501 (3) 0.0205 (8)
C18 0.0318 (4) 0.2832 (4) 0.5834 (3) 0.0244 (8)
H18A 0.0354 0.3449 0.5318 0.029*
C19 0.1596 (4) 0.3155 (4) 0.6888 (3) 0.0225 (8)
H19A 0.2481 0.4002 0.7103 0.027*
C20 0.1577 (4) 0.2200 (3) 0.7659 (3) 0.0191 (8)
C21 0.2821 (4) −0.2656 (3) 0.6483 (3) 0.0235 (8)
C22 0.4175 (4) −0.2152 (4) 0.7585 (4) 0.0309 (9)
H22A 0.4307 −0.1352 0.8276 0.037*
C23 0.5305 (4) −0.2846 (4) 0.7637 (4) 0.0356 (10)
H23A 0.6184 −0.2533 0.8374 0.043*
C24 0.5138 (5) −0.3997 (4) 0.6605 (4) 0.0390 (10)
H24A 0.5908 −0.4457 0.6645 0.047*
C25 0.3842 (5) −0.4474 (4) 0.5513 (4) 0.0359 (10)
H25A 0.3744 −0.5243 0.4812 0.043*
C26 0.2686 (4) −0.3814 (4) 0.5457 (4) 0.0288 (9)
H26A 0.1803 −0.4151 0.4719 0.035*
C27 −0.0417 (4) −0.2920 (4) 0.5157 (3) 0.0256 (8)
C28 −0.1017 (5) −0.2603 (4) 0.4042 (4) 0.0356 (10)
H28A −0.0433 −0.1762 0.3897 0.043*
C29 −0.2464 (5) −0.3512 (5) 0.3147 (4) 0.0460 (12)
H29A −0.2854 −0.3280 0.2405 0.055*
C30 −0.3323 (6) −0.4749 (5) 0.3347 (5) 0.0437 (13)
H30A −0.4298 −0.5369 0.2739 0.052*
C31 −0.2753 (4) −0.5080 (4) 0.4443 (4) 0.0382 (10)
H31A −0.3348 −0.5925 0.4577 0.046*
C32 −0.1311 (6) −0.4182 (5) 0.5349 (5) 0.0293 (10)
H32A −0.0936 −0.4420 0.6090 0.035*
C33 0.5078 (4) 0.3083 (3) 0.8705 (3) 0.0224 (8)
C34 0.5148 (4) 0.2566 (4) 0.7479 (3) 0.0264 (8)
H34A 0.4225 0.1944 0.6812 0.032*
C35 0.6569 (4) 0.2968 (4) 0.7248 (4) 0.0336 (9)
H35A 0.6600 0.2618 0.6426 0.040*
C36 0.7940 (4) 0.3881 (4) 0.8220 (4) 0.0367 (10)
H36A 0.8892 0.4168 0.8051 0.044*
C37 0.7910 (4) 0.4376 (4) 0.9452 (4) 0.0393 (10)
H37A 0.8845 0.4980 1.0115 0.047*
C38 0.6493 (4) 0.3974 (4) 0.9693 (4) 0.0301 (9)
H38A 0.6479 0.4301 1.0524 0.036*
C39 0.3227 (4) 0.4097 (4) 1.0203 (3) 0.0241 (8)
C40 0.3914 (4) 0.5553 (4) 1.0213 (4) 0.0300 (10)
H40A 0.4484 0.5721 0.9660 0.036*
C41 0.3764 (5) 0.6748 (4) 1.1029 (4) 0.0405 (11)
H41A 0.4242 0.7716 1.1032 0.049*
C42 0.2902 (5) 0.6505 (5) 1.1843 (4) 0.0441 (11)
H42A 0.2784 0.7308 1.2388 0.053*
C43 0.2222 (5) 0.5080 (5) 1.1844 (4) 0.0393 (10)
H43A 0.1655 0.4920 1.2401 0.047*
C44 0.2370 (4) 0.3867 (4) 1.1023 (3) 0.0309 (9)
H44A 0.1892 0.2902 1.1027 0.037*
O51 0.2263 (4) 0.9663 (3) 0.3525 (3) 0.0569 (9)
H51 0.2201 0.9544 0.4206 0.085*
C51 0.2415 (6) 1.1147 (5) 0.3574 (5) 0.0596 (13)
H51A 0.1561 1.1392 0.3809 0.089*
H51B 0.2373 1.1259 0.2749 0.089*
H51C 0.3416 1.1805 0.4198 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01928 (16) 0.02279 (17) 0.01809 (17) 0.00796 (13) 0.00489 (13) 0.00812 (14)
Cl1 0.0259 (6) 0.0422 (7) 0.0227 (6) 0.0104 (5) 0.0018 (5) 0.0090 (5)
P1 0.0221 (5) 0.0203 (5) 0.0204 (5) 0.0060 (4) 0.0058 (4) 0.0039 (4)
P2 0.0187 (5) 0.0211 (5) 0.0187 (5) 0.0054 (4) 0.0056 (4) 0.0062 (4)
O1 0.0376 (16) 0.0261 (13) 0.0225 (14) 0.0095 (11) 0.0137 (12) 0.0082 (11)
C1 0.0158 (17) 0.0167 (16) 0.0225 (19) 0.0052 (14) 0.0036 (15) 0.0064 (15)
C2 0.0217 (18) 0.0262 (18) 0.0247 (19) 0.0104 (15) 0.0068 (16) 0.0097 (16)
C3 0.022 (2) 0.035 (2) 0.038 (2) 0.0124 (17) 0.0086 (18) 0.0215 (19)
C4 0.0192 (18) 0.0296 (19) 0.0248 (19) 0.0061 (15) 0.0059 (15) 0.0103 (16)
C5 0.036 (2) 0.041 (2) 0.032 (2) 0.0128 (18) 0.0149 (18) 0.0230 (19)
C6 0.040 (3) 0.050 (3) 0.026 (2) 0.016 (2) 0.020 (2) 0.015 (2)
C7 0.037 (2) 0.040 (2) 0.042 (2) 0.019 (2) 0.021 (2) 0.013 (2)
C8 0.031 (2) 0.031 (2) 0.029 (2) 0.0137 (18) 0.0132 (18) 0.0128 (18)
C9 0.0167 (17) 0.0191 (17) 0.0219 (18) 0.0014 (14) 0.0050 (14) 0.0050 (15)
C10 0.0148 (18) 0.0172 (18) 0.019 (2) 0.0053 (14) 0.0010 (16) 0.0006 (16)
C11 0.0179 (17) 0.0172 (16) 0.0181 (18) 0.0087 (14) 0.0088 (15) 0.0063 (14)
C12 0.0195 (18) 0.0215 (18) 0.0186 (18) 0.0093 (14) 0.0078 (15) 0.0029 (15)
C13 0.025 (2) 0.0230 (18) 0.026 (2) 0.0064 (15) 0.0087 (16) 0.0114 (16)
C14 0.019 (2) 0.031 (2) 0.032 (2) 0.0007 (17) 0.0008 (18) 0.0088 (19)
C15 0.026 (2) 0.034 (2) 0.026 (2) 0.0121 (17) 0.0004 (17) 0.0100 (18)
C16 0.033 (2) 0.029 (2) 0.0194 (19) 0.0134 (18) 0.0079 (16) 0.0117 (16)
C17 0.0237 (19) 0.0197 (18) 0.0209 (19) 0.0119 (15) 0.0084 (15) 0.0052 (15)
C18 0.029 (2) 0.0243 (19) 0.028 (2) 0.0138 (16) 0.0117 (17) 0.0158 (17)
C19 0.0190 (19) 0.0221 (19) 0.026 (2) 0.0045 (15) 0.0079 (16) 0.0085 (16)
C20 0.0203 (19) 0.0171 (17) 0.0202 (19) 0.0087 (14) 0.0081 (15) 0.0018 (15)
C21 0.0221 (19) 0.0210 (18) 0.026 (2) 0.0038 (15) 0.0100 (16) 0.0067 (16)
C22 0.0217 (19) 0.035 (2) 0.034 (2) 0.0069 (16) 0.0095 (17) 0.0089 (18)
C23 0.026 (2) 0.039 (2) 0.046 (3) 0.0122 (18) 0.0128 (19) 0.019 (2)
C24 0.038 (2) 0.035 (2) 0.065 (3) 0.0228 (18) 0.030 (2) 0.028 (2)
C25 0.044 (3) 0.024 (2) 0.046 (2) 0.0133 (18) 0.025 (2) 0.0080 (19)
C26 0.031 (2) 0.027 (2) 0.032 (2) 0.0100 (16) 0.0146 (18) 0.0097 (17)
C27 0.026 (2) 0.0245 (19) 0.025 (2) 0.0111 (16) 0.0074 (16) 0.0036 (16)
C28 0.036 (2) 0.037 (2) 0.027 (2) 0.0082 (19) 0.0062 (19) 0.0086 (19)
C29 0.042 (3) 0.055 (3) 0.027 (2) 0.013 (2) −0.002 (2) 0.006 (2)
C30 0.031 (3) 0.044 (3) 0.037 (3) 0.005 (2) 0.000 (2) −0.004 (2)
C31 0.028 (3) 0.028 (2) 0.047 (3) −0.0001 (18) 0.010 (2) 0.004 (2)
C32 0.026 (2) 0.028 (2) 0.031 (2) 0.0075 (16) 0.0090 (18) 0.0063 (18)
C33 0.0243 (19) 0.0188 (17) 0.0232 (19) 0.0074 (15) 0.0048 (16) 0.0080 (15)
C34 0.023 (2) 0.029 (2) 0.025 (2) 0.0082 (16) 0.0068 (16) 0.0059 (17)
C35 0.038 (2) 0.038 (2) 0.038 (2) 0.0188 (19) 0.022 (2) 0.0191 (19)
C36 0.025 (2) 0.038 (2) 0.063 (3) 0.0137 (18) 0.028 (2) 0.026 (2)
C37 0.021 (2) 0.036 (2) 0.048 (3) 0.0032 (17) 0.0034 (19) 0.007 (2)
C38 0.024 (2) 0.030 (2) 0.031 (2) 0.0036 (17) 0.0105 (17) 0.0061 (17)
C39 0.0214 (18) 0.0278 (19) 0.0184 (18) 0.0089 (15) 0.0014 (15) 0.0032 (15)
C40 0.028 (2) 0.026 (2) 0.031 (2) 0.0091 (17) 0.0036 (17) 0.0072 (19)
C41 0.041 (3) 0.029 (2) 0.039 (3) 0.0150 (19) −0.002 (2) 0.001 (2)
C42 0.044 (3) 0.045 (3) 0.030 (2) 0.027 (2) −0.003 (2) −0.008 (2)
C43 0.041 (2) 0.052 (3) 0.024 (2) 0.023 (2) 0.0105 (19) 0.002 (2)
C44 0.030 (2) 0.033 (2) 0.026 (2) 0.0101 (17) 0.0053 (17) 0.0076 (18)
O51 0.075 (2) 0.058 (2) 0.0428 (19) 0.0185 (17) 0.0309 (19) 0.0154 (16)
C51 0.083 (4) 0.056 (3) 0.054 (3) 0.026 (3) 0.039 (3) 0.022 (3)

Geometric parameters (Å, º)

Rh1—C1 2.092 (3) C21—C22 1.408 (4)
Rh1—C10 2.113 (3) C22—C23 1.377 (5)
Rh1—P2 2.1988 (10) C22—H22A 0.9300
Rh1—C2 2.289 (3) C23—C24 1.372 (5)
Rh1—Cl1 2.3222 (15) C23—H23A 0.9300
Rh1—C3 2.497 (3) C24—C25 1.372 (5)
P1—O1 1.471 (2) C24—H24A 0.9300
P1—C27 1.796 (4) C25—C26 1.376 (5)
P1—C21 1.800 (4) C25—H25A 0.9300
P1—C1 1.804 (3) C26—H26A 0.9300
P2—C33 1.809 (4) C27—C28 1.384 (5)
P2—C20 1.815 (3) C27—C32 1.386 (5)
P2—C39 1.826 (4) C28—C29 1.376 (5)
C1—C2 1.437 (4) C28—H28A 0.9300
C1—C10 1.470 (5) C29—C30 1.360 (6)
C2—C3 1.381 (5) C29—H29A 0.9300
C2—H2A 0.9800 C30—C31 1.367 (6)
C3—C4 1.435 (5) C30—H30A 0.9300
C3—H3A 0.9800 C31—C32 1.374 (6)
C4—C5 1.399 (5) C31—H31A 0.9300
C4—C9 1.413 (4) C32—H32A 0.9300
C5—C6 1.362 (5) C33—C34 1.393 (5)
C5—H5A 0.9300 C33—C38 1.395 (5)
C6—C7 1.399 (5) C34—C35 1.374 (5)
C6—H6A 0.9300 C34—H34A 0.9300
C7—C8 1.370 (5) C35—C36 1.369 (5)
C7—H7A 0.9300 C35—H35A 0.9300
C8—C9 1.390 (5) C36—C37 1.383 (5)
C8—H8A 0.9300 C36—H36A 0.9300
C9—C10 1.457 (5) C37—C38 1.376 (5)
C10—C11 1.505 (4) C37—H37A 0.9300
C11—C20 1.379 (4) C38—H38A 0.9300
C11—C12 1.422 (4) C39—C44 1.383 (5)
C12—C13 1.405 (4) C39—C40 1.391 (4)
C12—C17 1.428 (4) C40—C41 1.377 (5)
C13—C14 1.343 (5) C40—H40A 0.9300
C13—H13A 0.9300 C41—C42 1.383 (6)
C14—C15 1.410 (5) C41—H41A 0.9300
C14—H14A 0.9300 C42—C43 1.367 (5)
C15—C16 1.362 (5) C42—H42A 0.9300
C15—H15A 0.9300 C43—C44 1.392 (5)
C16—C17 1.401 (4) C43—H43A 0.9300
C16—H16A 0.9300 C44—H44A 0.9300
C17—C18 1.420 (5) O51—C51 1.403 (5)
C18—C19 1.359 (4) O51—H51 0.8200
C18—H18A 0.9300 C51—H51A 0.9600
C19—C20 1.413 (4) C51—H51B 0.9600
C19—H19A 0.9300 C51—H51C 0.9600
C21—C26 1.381 (5)
C1—Rh1—C10 40.93 (13) C18—C17—C12 118.8 (3)
C1—Rh1—P2 105.25 (9) C19—C18—C17 121.5 (3)
C10—Rh1—P2 84.52 (10) C19—C18—H18A 119.2
C1—Rh1—C2 37.95 (11) C17—C18—H18A 119.2
C10—Rh1—C2 67.61 (12) C18—C19—C20 119.8 (3)
P2—Rh1—C2 143.03 (8) C18—C19—H19A 120.1
C1—Rh1—Cl1 155.05 (9) C20—C19—H19A 120.1
C10—Rh1—Cl1 160.82 (10) C11—C20—C19 120.8 (3)
P2—Rh1—Cl1 93.61 (5) C11—C20—P2 115.4 (2)
C2—Rh1—Cl1 120.65 (9) C19—C20—P2 123.9 (2)
C1—Rh1—C3 63.69 (12) C26—C21—C22 118.7 (3)
C10—Rh1—C3 73.12 (12) C26—C21—P1 119.9 (3)
P2—Rh1—C3 155.56 (8) C22—C21—P1 120.8 (3)
C2—Rh1—C3 33.19 (12) C23—C22—C21 119.8 (4)
Cl1—Rh1—C3 104.21 (9) C23—C22—H22A 120.1
O1—P1—C27 111.31 (15) C21—C22—H22A 120.1
O1—P1—C21 111.22 (15) C24—C23—C22 120.3 (4)
C27—P1—C21 107.29 (16) C24—C23—H23A 119.9
O1—P1—C1 115.56 (14) C22—C23—H23A 119.9
C27—P1—C1 103.97 (16) C23—C24—C25 120.4 (4)
C21—P1—C1 106.92 (16) C23—C24—H24A 119.8
C33—P2—C20 109.10 (16) C25—C24—H24A 119.8
C33—P2—C39 105.40 (16) C24—C25—C26 120.0 (4)
C20—P2—C39 101.86 (15) C24—C25—H25A 120.0
C33—P2—Rh1 120.06 (11) C26—C25—H25A 120.0
C20—P2—Rh1 103.91 (11) C25—C26—C21 120.8 (4)
C39—P2—Rh1 114.93 (11) C25—C26—H26A 119.6
C2—C1—C10 115.1 (3) C21—C26—H26A 119.6
C2—C1—P1 121.6 (3) C28—C27—C32 118.3 (4)
C10—C1—P1 123.1 (2) C28—C27—P1 118.4 (3)
C2—C1—Rh1 78.50 (19) C32—C27—P1 123.3 (3)
C10—C1—Rh1 70.30 (18) C29—C28—C27 121.0 (4)
P1—C1—Rh1 124.85 (16) C29—C28—H28A 119.5
C3—C2—C1 120.4 (3) C27—C28—H28A 119.5
C3—C2—Rh1 81.7 (2) C30—C29—C28 120.0 (4)
C1—C2—Rh1 63.55 (17) C30—C29—H29A 120.0
C3—C2—H2A 119.6 C28—C29—H29A 120.0
C1—C2—H2A 119.6 C29—C30—C31 119.9 (4)
Rh1—C2—H2A 119.6 C29—C30—H30A 120.0
C2—C3—C4 122.4 (3) C31—C30—H30A 120.0
C2—C3—Rh1 65.13 (19) C30—C31—C32 120.9 (4)
C4—C3—Rh1 88.4 (2) C30—C31—H31A 119.6
C2—C3—H3A 118.8 C32—C31—H31A 119.6
C4—C3—H3A 118.8 C31—C32—C27 120.0 (5)
Rh1—C3—H3A 118.8 C31—C32—H32A 120.0
C5—C4—C9 119.4 (3) C27—C32—H32A 120.0
C5—C4—C3 122.2 (3) C34—C33—C38 118.3 (3)
C9—C4—C3 118.4 (3) C34—C33—P2 121.0 (3)
C6—C5—C4 120.7 (3) C38—C33—P2 120.4 (3)
C6—C5—H5A 119.6 C35—C34—C33 120.6 (3)
C4—C5—H5A 119.6 C35—C34—H34A 119.7
C5—C6—C7 119.7 (4) C33—C34—H34A 119.7
C5—C6—H6A 120.1 C36—C35—C34 120.5 (4)
C7—C6—H6A 120.1 C36—C35—H35A 119.7
C8—C7—C6 120.7 (4) C34—C35—H35A 119.7
C8—C7—H7A 119.7 C35—C36—C37 120.0 (4)
C6—C7—H7A 119.7 C35—C36—H36A 120.0
C7—C8—C9 120.5 (3) C37—C36—H36A 120.0
C7—C8—H8A 119.8 C38—C37—C36 119.8 (4)
C9—C8—H8A 119.8 C38—C37—H37A 120.1
C8—C9—C4 119.0 (3) C36—C37—H37A 120.1
C8—C9—C10 123.5 (3) C37—C38—C33 120.7 (4)
C4—C9—C10 117.2 (3) C37—C38—H38A 119.6
C9—C10—C1 121.0 (3) C33—C38—H38A 119.6
C9—C10—C11 120.9 (3) C44—C39—C40 118.6 (3)
C1—C10—C11 116.2 (3) C44—C39—P2 118.5 (3)
C9—C10—Rh1 97.8 (2) C40—C39—P2 122.7 (3)
C1—C10—Rh1 68.76 (18) C41—C40—C39 121.1 (4)
C11—C10—Rh1 115.7 (2) C41—C40—H40A 119.5
C20—C11—C12 120.3 (3) C39—C40—H40A 119.5
C20—C11—C10 118.8 (3) C40—C41—C42 119.8 (4)
C12—C11—C10 120.9 (3) C40—C41—H41A 120.1
C13—C12—C11 123.4 (3) C42—C41—H41A 120.1
C13—C12—C17 117.9 (3) C43—C42—C41 119.7 (4)
C11—C12—C17 118.7 (3) C43—C42—H42A 120.2
C14—C13—C12 121.5 (3) C41—C42—H42A 120.2
C14—C13—H13A 119.3 C42—C43—C44 120.8 (4)
C12—C13—H13A 119.3 C42—C43—H43A 119.6
C13—C14—C15 121.2 (3) C44—C43—H43A 119.6
C13—C14—H14A 119.4 C39—C44—C43 120.0 (4)
C15—C14—H14A 119.4 C39—C44—H44A 120.0
C16—C15—C14 118.9 (3) C43—C44—H44A 120.0
C16—C15—H15A 120.6 C51—O51—H51 109.5
C14—C15—H15A 120.6 O51—C51—H51A 109.5
C15—C16—C17 121.6 (3) O51—C51—H51B 109.5
C15—C16—H16A 119.2 H51A—C51—H51B 109.5
C17—C16—H16A 119.2 O51—C51—H51C 109.5
C16—C17—C18 122.2 (3) H51A—C51—H51C 109.5
C16—C17—C12 119.0 (3) H51B—C51—H51C 109.5
C1—Rh1—P2—C33 −97.23 (16) C3—Rh1—C10—C1 −69.07 (19)
C10—Rh1—P2—C33 −132.86 (16) C1—Rh1—C10—C11 −109.8 (3)
C2—Rh1—P2—C33 −92.7 (2) P2—Rh1—C10—C11 11.1 (2)
Cl1—Rh1—P2—C33 66.29 (13) C2—Rh1—C10—C11 −144.1 (3)
C3—Rh1—P2—C33 −156.5 (3) Cl1—Rh1—C10—C11 96.4 (4)
C1—Rh1—P2—C20 24.97 (15) C3—Rh1—C10—C11 −178.9 (3)
C10—Rh1—P2—C20 −10.66 (16) C9—C10—C11—C20 110.3 (4)
C2—Rh1—P2—C20 29.5 (2) C1—C10—C11—C20 −85.2 (4)
Cl1—Rh1—P2—C20 −171.52 (12) Rh1—C10—C11—C20 −7.3 (4)
C3—Rh1—P2—C20 −34.3 (3) C9—C10—C11—C12 −72.4 (4)
C1—Rh1—P2—C39 135.37 (15) C1—C10—C11—C12 92.1 (4)
C10—Rh1—P2—C39 99.74 (16) Rh1—C10—C11—C12 170.0 (2)
C2—Rh1—P2—C39 139.94 (18) C20—C11—C12—C13 −178.0 (3)
Cl1—Rh1—P2—C39 −61.12 (12) C10—C11—C12—C13 4.7 (5)
C3—Rh1—P2—C39 76.1 (3) C20—C11—C12—C17 3.9 (5)
O1—P1—C1—C2 −148.9 (2) C10—C11—C12—C17 −173.3 (3)
C27—P1—C1—C2 88.9 (3) C11—C12—C13—C14 −178.7 (4)
C21—P1—C1—C2 −24.5 (3) C17—C12—C13—C14 −0.7 (5)
O1—P1—C1—C10 37.2 (3) C12—C13—C14—C15 1.8 (6)
C27—P1—C1—C10 −85.1 (3) C13—C14—C15—C16 −1.0 (6)
C21—P1—C1—C10 161.6 (3) C14—C15—C16—C17 −0.8 (5)
O1—P1—C1—Rh1 −50.7 (2) C15—C16—C17—C18 −177.3 (4)
C27—P1—C1—Rh1 −172.95 (19) C15—C16—C17—C12 1.9 (5)
C21—P1—C1—Rh1 73.7 (2) C13—C12—C17—C16 −1.1 (5)
C10—Rh1—C1—C2 −122.2 (3) C11—C12—C17—C16 177.0 (3)
P2—Rh1—C1—C2 175.53 (17) C13—C12—C17—C18 178.1 (3)
Cl1—Rh1—C1—C2 37.7 (3) C11—C12—C17—C18 −3.8 (5)
C3—Rh1—C1—C2 −27.86 (18) C16—C17—C18—C19 −180.0 (4)
P2—Rh1—C1—C10 −62.26 (19) C12—C17—C18—C19 0.8 (5)
C2—Rh1—C1—C10 122.2 (3) C17—C18—C19—C20 2.0 (5)
Cl1—Rh1—C1—C10 159.92 (19) C12—C11—C20—C19 −1.2 (5)
C3—Rh1—C1—C10 94.4 (2) C10—C11—C20—C19 176.1 (3)
C10—Rh1—C1—P1 117.2 (3) C12—C11—C20—P2 179.9 (2)
P2—Rh1—C1—P1 54.9 (2) C10—C11—C20—P2 −2.8 (4)
C2—Rh1—C1—P1 −120.6 (3) C18—C19—C20—C11 −1.8 (5)
Cl1—Rh1—C1—P1 −82.9 (3) C18—C19—C20—P2 177.1 (3)
C3—Rh1—C1—P1 −148.5 (2) C33—P2—C20—C11 139.8 (3)
C10—C1—C2—C3 −0.2 (4) C39—P2—C20—C11 −109.1 (3)
P1—C1—C2—C3 −174.6 (3) Rh1—P2—C20—C11 10.6 (3)
Rh1—C1—C2—C3 61.4 (3) C33—P2—C20—C19 −39.2 (3)
C10—C1—C2—Rh1 −61.6 (2) C39—P2—C20—C19 71.9 (3)
P1—C1—C2—Rh1 124.0 (2) Rh1—P2—C20—C19 −168.3 (3)
C1—Rh1—C2—C3 −130.1 (3) O1—P1—C21—C26 −91.1 (3)
C10—Rh1—C2—C3 −93.2 (2) C27—P1—C21—C26 30.9 (3)
P2—Rh1—C2—C3 −137.25 (17) C1—P1—C21—C26 141.9 (3)
Cl1—Rh1—C2—C3 67.4 (2) O1—P1—C21—C22 79.4 (3)
C10—Rh1—C2—C1 36.8 (2) C27—P1—C21—C22 −158.6 (3)
P2—Rh1—C2—C1 −7.2 (3) C1—P1—C21—C22 −47.6 (3)
Cl1—Rh1—C2—C1 −162.55 (16) C26—C21—C22—C23 −2.1 (5)
C3—Rh1—C2—C1 130.1 (3) P1—C21—C22—C23 −172.7 (3)
C1—C2—C3—C4 18.1 (5) C21—C22—C23—C24 1.9 (5)
Rh1—C2—C3—C4 70.6 (3) C22—C23—C24—C25 −0.3 (5)
C1—C2—C3—Rh1 −52.6 (3) C23—C24—C25—C26 −1.1 (6)
C1—Rh1—C3—C2 31.7 (2) C24—C25—C26—C21 0.9 (5)
C10—Rh1—C3—C2 74.7 (2) C22—C21—C26—C25 0.7 (5)
P2—Rh1—C3—C2 99.4 (3) P1—C21—C26—C25 171.4 (3)
Cl1—Rh1—C3—C2 −124.99 (19) O1—P1—C27—C28 2.9 (4)
C1—Rh1—C3—C4 −95.5 (2) C21—P1—C27—C28 −119.0 (3)
C10—Rh1—C3—C4 −52.4 (2) C1—P1—C27—C28 128.0 (3)
P2—Rh1—C3—C4 −27.7 (4) O1—P1—C27—C32 −174.6 (4)
C2—Rh1—C3—C4 −127.1 (3) C21—P1—C27—C32 63.5 (4)
Cl1—Rh1—C3—C4 107.9 (2) C1—P1—C27—C32 −49.6 (4)
C2—C3—C4—C5 167.0 (3) C32—C27—C28—C29 0.1 (6)
Rh1—C3—C4—C5 −134.1 (3) P1—C27—C28—C29 −177.6 (4)
C2—C3—C4—C9 −15.3 (5) C27—C28—C29—C30 −0.4 (7)
Rh1—C3—C4—C9 43.6 (3) C28—C29—C30—C31 0.5 (8)
C9—C4—C5—C6 1.4 (5) C29—C30—C31—C32 −0.3 (8)
C3—C4—C5—C6 179.1 (4) C30—C31—C32—C27 0.0 (8)
C4—C5—C6—C7 −0.7 (6) C28—C27—C32—C31 0.1 (7)
C5—C6—C7—C8 −0.5 (6) P1—C27—C32—C31 177.7 (4)
C6—C7—C8—C9 1.1 (6) C20—P2—C33—C34 −34.8 (3)
C7—C8—C9—C4 −0.4 (5) C39—P2—C33—C34 −143.5 (3)
C7—C8—C9—C10 −173.5 (4) Rh1—P2—C33—C34 84.8 (3)
C5—C4—C9—C8 −0.9 (5) C20—P2—C33—C38 151.5 (3)
C3—C4—C9—C8 −178.6 (3) C39—P2—C33—C38 42.8 (3)
C5—C4—C9—C10 172.7 (3) Rh1—P2—C33—C38 −88.9 (3)
C3—C4—C9—C10 −5.0 (4) C38—C33—C34—C35 −2.1 (5)
C8—C9—C10—C1 −164.0 (3) P2—C33—C34—C35 −175.9 (3)
C4—C9—C10—C1 22.7 (4) C33—C34—C35—C36 0.1 (5)
C8—C9—C10—C11 −0.2 (5) C34—C35—C36—C37 1.6 (5)
C4—C9—C10—C11 −173.5 (3) C35—C36—C37—C38 −1.3 (6)
C8—C9—C10—Rh1 126.2 (3) C36—C37—C38—C33 −0.7 (5)
C4—C9—C10—Rh1 −47.1 (3) C34—C33—C38—C37 2.3 (5)
C2—C1—C10—C9 −20.0 (4) P2—C33—C38—C37 176.2 (3)
P1—C1—C10—C9 154.3 (2) C33—P2—C39—C44 −154.2 (3)
Rh1—C1—C10—C9 −86.3 (3) C20—P2—C39—C44 91.9 (3)
C2—C1—C10—C11 175.5 (3) Rh1—P2—C39—C44 −19.7 (3)
P1—C1—C10—C11 −10.3 (4) C33—P2—C39—C40 31.9 (3)
Rh1—C1—C10—C11 109.2 (3) C20—P2—C39—C40 −82.0 (3)
C2—C1—C10—Rh1 66.3 (2) Rh1—P2—C39—C40 166.4 (2)
P1—C1—C10—Rh1 −119.4 (2) C44—C39—C40—C41 0.6 (5)
C1—Rh1—C10—C9 120.3 (3) P2—C39—C40—C41 174.5 (3)
P2—Rh1—C10—C9 −118.8 (2) C39—C40—C41—C42 −0.8 (5)
C2—Rh1—C10—C9 86.0 (2) C40—C41—C42—C43 0.9 (6)
Cl1—Rh1—C10—C9 −33.6 (4) C41—C42—C43—C44 −0.9 (6)
C3—Rh1—C10—C9 51.2 (2) C40—C39—C44—C43 −0.6 (5)
P2—Rh1—C10—C1 120.93 (18) P2—C39—C44—C43 −174.7 (3)
C2—Rh1—C10—C1 −34.25 (17) C42—C43—C44—C39 0.7 (5)
Cl1—Rh1—C10—C1 −153.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O51—H51···O1i 0.82 1.95 2.755 (4) 169

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2508).

References

  1. Bunten, K. A., Farrar, D. H., Poe, A. J. & Lough, A. (2002). Organometallics, 21, 3344–3350.
  2. Fischer, C., Selle, C., Drexler, H.-J. & Heller, D. (2012). Z. Anorg. Allg. Chem. Submitted.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Preetz, A. (2009). Dissertation, University of Rostock, Germany.
  5. Preetz, A., Drexler, H.-J., Schulz, S. & Heller, D. (2010). Tetrahedron Asymmetry, 21, 1226–1231.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  8. Tani, K., Yamagata, T., Tatsuno, Y., Yamagata, Y., Tomita, K., Akutagawa, S., Kumobayashi, H. & Otsuka, S. (1985). Angew. Chem. Int. Ed. 24, 217–219.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003418/hy2508sup1.cif

e-68-0m259-sup1.cif (34.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003418/hy2508Isup2.hkl

e-68-0m259-Isup2.hkl (305.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES