Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Feb 10;68(Pt 3):m287. doi: 10.1107/S1600536812002462

Poly[[penta­aqua­(μ4-pyridine-2,4,6-tri­carboxyl­ato)(μ3-pyridine-2,4,6-tri­carboxyl­ato)disamarium(III)] mono­hydrate]

Yong-Wei Jin a, Hong-lin Zhu a,*
PMCID: PMC3297243  PMID: 22412433

Abstract

The asymmetric unit of the title compound, {[Sm2(C8H2NO6)2(H2O)5]·H2O}n, contains two independent SmIII ions, two pyridine-2,4,6-tricarboxyl­ate (ptc) ligands, five aqua ligands and one lattice water mol­ecule. One SmIII ion is nine-coordinated by one N and five O atoms from the three ptc ligands and three aqua ligands in a distorted monocapped square antiprismatic geometry, and the other is eight-coordinated by one N and five O atoms from three ptc ligands and two aqua ligands in a 4,4′-bicapped trigonal anti­prismatic geometry. The ptc ligands brigde the SmIII ions into a three-dimensional polymeric framework. Extensive O—H⋯O hydrogen bonding is observed in the crystal structure.

Related literature  

For related compounds, see: Gao et al. (2006); Ghosh & Bharadwaj (2005); Li et al. (2008); Wang et al. (2007).graphic file with name e-68-0m287-scheme1.jpg

Experimental  

Crystal data  

  • [Sm2(C8H2NO6)2(H2O)5]·H2O

  • M r = 825.01

  • Monoclinic, Inline graphic

  • a = 18.426 (4) Å

  • b = 6.9082 (14) Å

  • c = 18.583 (4) Å

  • β = 111.98 (3)°

  • V = 2193.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.40 mm−1

  • T = 293 K

  • 0.43 × 0.28 × 0.21 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.177, T max = 0.321

  • 20300 measured reflections

  • 4963 independent reflections

  • 4776 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.041

  • S = 1.19

  • 4963 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002462/cv5233sup1.cif

e-68-0m287-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002462/cv5233Isup2.hkl

e-68-0m287-Isup2.hkl (243.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O14i 0.82 1.87 2.686 (3) 172
O7—H7B⋯O2ii 0.86 1.80 2.645 (3) 165
O8—H8A⋯O12iii 0.89 1.83 2.727 (3) 177
O8—H8B⋯O9iv 0.87 2.38 2.831 (3) 113
O9—H9A⋯O6i 0.87 1.84 2.698 (3) 171
O9—H9B⋯O5i 0.93 2.55 3.052 (3) 114
O16—H16A⋯O4i 0.82 2.31 3.075 (3) 157
O16—H16B⋯O15v 0.79 1.97 2.747 (3) 171
O17—H17A⋯O18vi 0.84 1.86 2.697 (3) 176
O17—H17B⋯O5vii 0.80 1.96 2.731 (3) 162
O18—H18A⋯O14viii 0.85 2.06 2.905 (3) 174
O18—H18B⋯O13 0.82 1.93 2.736 (3) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This project was supported by the Scientific Research Fund of Ningbo University (grant Nos. XKL11058 and XYL11005). Sincere thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

supplementary crystallographic information

Comment

In recent years, research of lanthanide pyridine-2,4,6-tricarboxylate coordination polymers has been of great interest in the fields of molecule adsorption, host-guest interaction and luminescence materials (Gao et al., 2006; Li et al., 2008; Wang et al., 2007;) etc. The compound {[Pr(H2O)2(ptc)].2H2O} reported by Ghosh et al. (2005) represents an example of three-dimensional MOF, which could potentially be utilized as an adsorption material. In this contribution, we report the structure of the title compound.

The asymmetric unit of title compound contains two SmIII ions (Sm1, Sm2), two ptc ligands (denoted as ptc1 and ptc2 ligands, which contain N1 and N2 atoms, respectively) (H3ptc = pyridine-2,4,6-tricarboxylate), five aqua ligands and one lattice water molecule as illustrated in Fig. 1. The Sm1 and Sm2 are respectively 9- and 8-coordinated with the ligating atoms occupying the corners of distorted monocapped square anti-prism and 4,4'-bicapped trigonal anti-prism, respectively. The bond distances about the Sm1 and Sm2 atoms fall in the regions 2.406-2.587 Å and 2.359-2.529 Å, the corresponding bond angles are in the regions 50.9-147.8° and 63.3-159.7°, respectively.

Each ptc1 ligand links four SmIII centers with the 4-carboxylate bonded to two metal ions in syn-syn bridging fashion and the 2-carboxylate coordinated to two metal ions in anti-syn bridging fashion, while each ptc2 ligand connects three SmIII centers with the 4-carboxylate chelating one metal ion and the 2-carboxylate bridging two metal ions in anti-anti bridging fashions.

Both ptc1 and ptc2 ligands coordinate Sm1 atoms to form a linear [Sm(ptc)2] metallo-ligand, which, in turn, bridges the Sm2 atoms to generate one-dimensional ribbon-like chains with rectangular and 8-membered rhombic rings alternating (Fig. 2). Within the rectangular ring, the two adjacent ptc1 and ptc2 ligands orientate approximately parallelly to each other with a dihedral angle of 7.4° and the mean interplanar distance of 3.33 Å suggests significant intrachain π···π stacking interactions. The resulting one-dimensional chains donate carboxylate O atoms (O1 and O10) to coordinate with Sm atoms from two neighboring chains to construct a three-dimensional framework (Fig. 3).

Experimental

All chemicals were obtained from commerical sources and were used as obtained. A mixture of SmCl3.nH2O (0.60 mmol), pyridine-2,4,6-tricarboxylic acid (0.0537 g, 0.25 mmol), Malonic acid (0.0261 g, 0.25 mmol), NaOH (1 ml, 1 M) and H2O (20 ml) was sealed into a 23 ml Teflon-lined stainless autoclave, which was heated up to 180°C, at which temperature the reactor was held for 3 days, and then cooled to room temperature. A mixture of brownish deposit and a small amount of colourless block-liked crystals were obtained.

Refinement

H atoms bonded to C atoms were palced in geometrically calculated position, and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Figures

Fig. 1.

Fig. 1.

A portion of the crystal structure showing the atomic numbering and 45% probability dispalcement ellipsoids [symmetry codes: (i) 1/2-x, -1/2+y, 1/2-z; (ii) x, y, 1+z; (iii) 1-x, 1-y, 1-z; (iv) 1/2-x, -1/2+y, 3/2-z].

Fig. 2.

Fig. 2.

The one-dimensional chain with the rectangular and 8-membered rhombic rings.

Fig. 3.

Fig. 3.

The three-dimensional metal-organic framework in the title compound.

Crystal data

[Sm2(C8H2NO6)2(H2O)5]·H2O F(000) = 1576
Mr = 825.01 Dx = 2.498 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 19369 reflections
a = 18.426 (4) Å θ = 3.2–27.5°
b = 6.9082 (14) Å µ = 5.40 mm1
c = 18.583 (4) Å T = 293 K
β = 111.98 (3)° Block, colorless
V = 2193.6 (8) Å3 0.43 × 0.28 × 0.21 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 4963 independent reflections
Radiation source: fine-focus sealed tube 4776 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 0 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −23→23
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −8→8
Tmin = 0.177, Tmax = 0.321 l = −24→22
20300 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0066P)2 + 3.5019P] where P = (Fo2 + 2Fc2)/3
S = 1.19 (Δ/σ)max = 0.002
4963 reflections Δρmax = 0.69 e Å3
344 parameters Δρmin = −0.84 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00244 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sm1 0.373309 (7) 0.222784 (18) 0.378119 (7) 0.01049 (4)
Sm2 0.374965 (8) 0.250031 (17) 0.896720 (7) 0.01111 (5)
N1 0.42996 (13) 0.3322 (3) 0.27802 (12) 0.0125 (4)
C1 0.38355 (15) 0.4105 (3) 0.21147 (15) 0.0127 (5)
C2 0.40694 (15) 0.4323 (3) 0.14877 (15) 0.0139 (5)
H2A 0.3735 0.4861 0.1023 0.017*
C3 0.48176 (15) 0.3710 (3) 0.15774 (15) 0.0125 (5)
C4 0.53246 (15) 0.3029 (4) 0.22948 (15) 0.0136 (5)
H4A 0.5840 0.2707 0.2377 0.016*
C5 0.50357 (15) 0.2846 (3) 0.28859 (15) 0.0119 (5)
C6 0.30319 (15) 0.4640 (4) 0.20964 (15) 0.0145 (5)
O1 0.26044 (11) 0.5719 (3) 0.15807 (11) 0.0185 (4)
O2 0.28618 (11) 0.3912 (3) 0.26427 (11) 0.0206 (4)
C7 0.50797 (15) 0.3719 (3) 0.08959 (14) 0.0124 (5)
O3 0.45938 (12) 0.3160 (3) 0.02671 (11) 0.0219 (4)
O4 0.57737 (11) 0.4236 (3) 0.10278 (11) 0.0172 (4)
C8 0.55086 (16) 0.2082 (4) 0.36836 (16) 0.0146 (5)
O5 0.62134 (12) 0.1852 (3) 0.38807 (12) 0.0278 (5)
O6 0.51110 (11) 0.1716 (3) 0.41069 (11) 0.0183 (4)
O7 0.36682 (12) −0.0503 (3) 0.29113 (11) 0.0220 (4)
H7B 0.3178 −0.0743 0.2654 0.026*
H7A 0.3869 −0.0502 0.2585 0.026*
O8 0.40849 (13) 0.5640 (3) 0.39790 (13) 0.0267 (5)
H8A 0.4563 0.6135 0.4218 0.032*
H8B 0.3682 0.5986 0.4083 0.032*
O9 0.37653 (13) −0.0753 (3) 0.45208 (12) 0.0232 (4)
H9A 0.4159 −0.0992 0.4946 0.028*
H9B 0.3363 −0.1166 0.4672 0.028*
N2 0.38147 (13) 0.2822 (3) 0.76366 (13) 0.0126 (4)
C9 0.31935 (15) 0.3494 (3) 0.70511 (15) 0.0136 (5)
C10 0.31717 (16) 0.3588 (4) 0.62931 (15) 0.0164 (5)
H10A 0.2726 0.4017 0.5888 0.020*
C11 0.38335 (16) 0.3023 (4) 0.61614 (15) 0.0144 (5)
C12 0.44856 (17) 0.2360 (3) 0.67751 (16) 0.0142 (5)
H12A 0.4938 0.2004 0.6699 0.017*
C13 0.44461 (16) 0.2242 (3) 0.75073 (16) 0.0135 (5)
C14 0.25231 (16) 0.4146 (4) 0.72805 (15) 0.0148 (5)
O10 0.19320 (12) 0.4815 (3) 0.67583 (11) 0.0210 (4)
O11 0.26175 (12) 0.3950 (3) 0.79795 (11) 0.0232 (4)
C15 0.38312 (17) 0.3038 (4) 0.53467 (15) 0.0157 (5)
O12 0.44658 (13) 0.2832 (3) 0.52504 (12) 0.0221 (4)
O13 0.31898 (12) 0.3173 (3) 0.47848 (11) 0.0212 (4)
C16 0.50960 (15) 0.1461 (3) 0.82233 (15) 0.0134 (5)
O14 0.57112 (12) 0.0880 (3) 0.81788 (11) 0.0206 (4)
O15 0.49458 (12) 0.1467 (3) 0.88390 (11) 0.0198 (4)
O16 0.39568 (13) −0.0498 (3) 0.97353 (11) 0.0244 (4)
H16B 0.4251 −0.0676 1.0162 0.029*
H16A 0.3898 −0.1564 0.9530 0.029*
O17 0.28096 (12) 0.3100 (3) 0.95460 (13) 0.0283 (5)
H17B 0.2358 0.3132 0.9261 0.034*
H17A 0.2806 0.2465 0.9929 0.034*
O18 0.21204 (15) 0.6072 (3) 0.41898 (14) 0.0374 (6)
H18B 0.2389 0.5106 0.4367 0.045*
H18A 0.1688 0.5550 0.3908 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sm1 0.00985 (8) 0.01369 (7) 0.00821 (7) 0.00008 (4) 0.00368 (6) 0.00015 (4)
Sm2 0.00839 (8) 0.01720 (7) 0.00731 (7) −0.00064 (4) 0.00243 (6) −0.00005 (4)
N1 0.0109 (11) 0.0167 (10) 0.0101 (10) 0.0002 (8) 0.0040 (9) 0.0003 (8)
C1 0.0095 (12) 0.0143 (11) 0.0133 (12) 0.0001 (9) 0.0032 (10) 0.0017 (9)
C2 0.0132 (13) 0.0169 (11) 0.0101 (12) −0.0002 (9) 0.0026 (10) 0.0028 (9)
C3 0.0128 (13) 0.0136 (11) 0.0118 (12) −0.0032 (9) 0.0055 (10) −0.0006 (9)
C4 0.0108 (13) 0.0162 (11) 0.0144 (13) −0.0015 (9) 0.0055 (11) −0.0011 (10)
C5 0.0115 (13) 0.0128 (10) 0.0111 (12) −0.0005 (9) 0.0041 (11) 0.0002 (9)
C6 0.0113 (13) 0.0184 (12) 0.0133 (12) 0.0010 (9) 0.0042 (10) −0.0015 (10)
O1 0.0137 (10) 0.0243 (9) 0.0164 (10) 0.0060 (7) 0.0045 (8) 0.0061 (8)
O2 0.0128 (10) 0.0339 (10) 0.0171 (10) 0.0053 (8) 0.0079 (8) 0.0105 (8)
C7 0.0137 (13) 0.0127 (10) 0.0105 (12) 0.0009 (9) 0.0044 (10) 0.0024 (9)
O3 0.0208 (11) 0.0313 (10) 0.0112 (10) −0.0046 (8) 0.0031 (9) −0.0038 (8)
O4 0.0150 (10) 0.0224 (9) 0.0158 (9) −0.0015 (7) 0.0077 (8) 0.0010 (7)
C8 0.0127 (13) 0.0158 (11) 0.0140 (13) 0.0001 (9) 0.0036 (11) −0.0002 (10)
O5 0.0108 (11) 0.0466 (13) 0.0235 (12) 0.0054 (9) 0.0035 (9) 0.0103 (10)
O6 0.0137 (10) 0.0295 (10) 0.0121 (9) 0.0051 (8) 0.0053 (8) 0.0073 (8)
O7 0.0143 (10) 0.0353 (11) 0.0188 (10) −0.0037 (8) 0.0090 (9) −0.0115 (9)
O8 0.0268 (12) 0.0190 (9) 0.0329 (12) −0.0045 (8) 0.0098 (10) −0.0050 (8)
O9 0.0273 (12) 0.0248 (10) 0.0169 (10) 0.0035 (8) 0.0074 (9) 0.0062 (8)
N2 0.0114 (11) 0.0163 (9) 0.0095 (11) 0.0000 (8) 0.0033 (9) 0.0004 (8)
C9 0.0136 (13) 0.0157 (11) 0.0113 (12) 0.0018 (9) 0.0044 (10) 0.0009 (9)
C10 0.0168 (14) 0.0197 (12) 0.0111 (13) 0.0039 (10) 0.0034 (11) 0.0030 (10)
C11 0.0173 (14) 0.0152 (11) 0.0114 (13) 0.0001 (9) 0.0062 (11) −0.0017 (10)
C12 0.0137 (14) 0.0169 (12) 0.0128 (13) 0.0007 (9) 0.0058 (12) −0.0007 (9)
C13 0.0131 (14) 0.0140 (11) 0.0133 (13) −0.0002 (9) 0.0049 (11) −0.0013 (9)
C14 0.0139 (13) 0.0171 (11) 0.0126 (12) 0.0028 (9) 0.0039 (10) 0.0006 (10)
O10 0.0170 (11) 0.0284 (10) 0.0149 (10) 0.0110 (8) 0.0029 (8) 0.0043 (8)
O11 0.0167 (11) 0.0417 (12) 0.0124 (10) 0.0096 (9) 0.0067 (9) 0.0040 (8)
C15 0.0216 (14) 0.0164 (11) 0.0105 (13) 0.0019 (10) 0.0076 (11) −0.0003 (10)
O12 0.0175 (11) 0.0370 (11) 0.0136 (10) 0.0003 (8) 0.0077 (9) −0.0027 (8)
O13 0.0180 (11) 0.0347 (11) 0.0099 (9) 0.0068 (8) 0.0042 (8) −0.0007 (8)
C16 0.0129 (13) 0.0135 (11) 0.0132 (12) −0.0016 (9) 0.0042 (10) 0.0001 (9)
O14 0.0137 (10) 0.0303 (10) 0.0194 (10) 0.0067 (8) 0.0079 (9) 0.0014 (8)
O15 0.0152 (10) 0.0336 (10) 0.0113 (9) 0.0068 (8) 0.0057 (8) 0.0043 (8)
O16 0.0297 (12) 0.0225 (10) 0.0140 (10) 0.0053 (8) 0.0002 (9) 0.0034 (8)
O17 0.0111 (11) 0.0532 (13) 0.0215 (11) 0.0062 (9) 0.0071 (9) 0.0058 (10)
O18 0.0347 (15) 0.0383 (13) 0.0323 (13) 0.0133 (10) 0.0046 (11) −0.0015 (10)

Geometric parameters (Å, º)

Sm1—O6 2.406 (2) O3—Sm2vi 2.377 (2)
Sm1—O2 2.422 (2) O4—Sm2iv 2.4185 (18)
Sm1—O8 2.436 (2) C8—O5 1.221 (3)
Sm1—O7 2.4582 (19) C8—O6 1.285 (3)
Sm1—O9 2.4642 (19) O7—H7B 0.8654
Sm1—O13 2.5110 (18) O7—H7A 0.8193
Sm1—O1i 2.5243 (19) O8—H8A 0.8930
Sm1—N1 2.564 (2) O8—H8B 0.8667
Sm1—O12 2.587 (2) O9—H9A 0.8662
Sm1—C15 2.901 (3) O9—H9B 0.9304
Sm2—O10ii 2.3600 (19) N2—C9 1.333 (3)
Sm2—O3iii 2.377 (2) N2—C13 1.335 (3)
Sm2—O17 2.3925 (19) C9—C10 1.396 (3)
Sm2—O15 2.4120 (19) C9—C14 1.518 (3)
Sm2—O4iv 2.4185 (19) C10—C11 1.387 (3)
Sm2—O11 2.420 (2) C10—H10A 0.9300
Sm2—O16 2.463 (2) C11—C12 1.389 (4)
Sm2—N2 2.530 (2) C11—C15 1.512 (3)
N1—C1 1.327 (3) C12—C13 1.392 (4)
N1—C5 1.337 (3) C12—H12A 0.9300
C1—C2 1.394 (3) C13—C16 1.518 (4)
C1—C6 1.514 (3) C14—O10 1.245 (3)
C2—C3 1.391 (4) C14—O11 1.252 (3)
C2—H2A 0.9300 O10—Sm2vii 2.3600 (19)
C3—C4 1.393 (4) C15—O13 1.254 (3)
C3—C7 1.515 (3) C15—O12 1.256 (3)
C4—C5 1.394 (3) C16—O14 1.234 (3)
C4—H4A 0.9300 C16—O15 1.274 (3)
C5—C8 1.506 (4) O16—H16B 0.7852
C6—O1 1.237 (3) O16—H16A 0.8179
C6—O2 1.273 (3) O17—H17B 0.8023
O1—Sm1v 2.5243 (19) O17—H17A 0.8383
C7—O3 1.238 (3) O18—H18B 0.8223
C7—O4 1.260 (3) O18—H18A 0.8524
O6—Sm1—O2 125.63 (6) C2—C1—C6 124.1 (2)
O6—Sm1—O8 84.72 (7) C3—C2—C1 118.0 (2)
O2—Sm1—O8 73.68 (8) C3—C2—H2A 121.0
O6—Sm1—O7 80.78 (7) C1—C2—H2A 121.0
O2—Sm1—O7 86.62 (7) C2—C3—C4 119.8 (2)
O8—Sm1—O7 141.88 (7) C2—C3—C7 120.7 (2)
O6—Sm1—O9 86.22 (7) C4—C3—C7 119.5 (2)
O2—Sm1—O9 139.32 (7) C3—C4—C5 117.9 (2)
O8—Sm1—O9 140.81 (7) C3—C4—H4A 121.1
O7—Sm1—O9 73.17 (7) C5—C4—H4A 121.1
O6—Sm1—O13 121.87 (7) N1—C5—C4 121.8 (2)
O2—Sm1—O13 101.87 (6) N1—C5—C8 114.3 (2)
O8—Sm1—O13 78.10 (7) C4—C5—C8 123.8 (2)
O7—Sm1—O13 138.87 (7) O1—C6—O2 125.5 (2)
O9—Sm1—O13 74.70 (7) O1—C6—C1 119.9 (2)
O6—Sm1—O1i 147.10 (6) O2—C6—C1 114.6 (2)
O2—Sm1—O1i 72.76 (7) C6—O1—Sm1v 136.93 (16)
O8—Sm1—O1i 128.16 (7) C6—O2—Sm1 127.30 (17)
O7—Sm1—O1i 72.87 (6) O3—C7—O4 126.5 (2)
O9—Sm1—O1i 67.72 (7) O3—C7—C3 116.3 (2)
O13—Sm1—O1i 71.60 (7) O4—C7—C3 117.1 (2)
O6—Sm1—N1 63.12 (7) C7—O3—Sm2vi 170.38 (18)
O2—Sm1—N1 62.70 (7) C7—O4—Sm2iv 127.27 (16)
O8—Sm1—N1 70.53 (7) O5—C8—O6 125.2 (3)
O7—Sm1—N1 71.46 (6) O5—C8—C5 120.0 (2)
O9—Sm1—N1 136.02 (6) O6—C8—C5 114.8 (2)
O13—Sm1—N1 147.78 (7) C8—O6—Sm1 127.38 (17)
O1i—Sm1—N1 123.39 (7) Sm1—O7—H7B 107.1
O6—Sm1—O12 70.93 (7) Sm1—O7—H7A 124.1
O2—Sm1—O12 139.30 (7) H7B—O7—H7A 104.9
O8—Sm1—O12 71.36 (7) Sm1—O8—H8A 127.1
O7—Sm1—O12 134.07 (7) Sm1—O8—H8B 95.7
O9—Sm1—O12 69.64 (7) H8A—O8—H8B 123.4
O13—Sm1—O12 50.94 (7) Sm1—O9—H9A 120.4
O1i—Sm1—O12 114.82 (7) Sm1—O9—H9B 124.7
N1—Sm1—O12 121.65 (7) H9A—O9—H9B 99.0
O6—Sm1—C15 96.45 (8) C9—N2—C13 119.8 (2)
O2—Sm1—C15 123.75 (7) C9—N2—Sm2 119.21 (16)
O8—Sm1—C15 75.45 (7) C13—N2—Sm2 120.87 (18)
O7—Sm1—C15 140.98 (7) N2—C9—C10 122.1 (2)
O9—Sm1—C15 67.82 (7) N2—C9—C14 114.5 (2)
O13—Sm1—C15 25.51 (7) C10—C9—C14 123.4 (2)
O1i—Sm1—C15 92.01 (7) C11—C10—C9 118.0 (2)
N1—Sm1—C15 141.37 (7) C11—C10—H10A 121.0
O12—Sm1—C15 25.64 (7) C9—C10—H10A 121.0
O10ii—Sm2—O3iii 137.50 (7) C10—C11—C12 119.7 (2)
O10ii—Sm2—O17 94.18 (8) C10—C11—C15 120.1 (2)
O3iii—Sm2—O17 79.54 (8) C12—C11—C15 120.1 (2)
O10ii—Sm2—O15 91.23 (7) C11—C12—C13 118.5 (2)
O3iii—Sm2—O15 83.25 (7) C11—C12—H12A 120.8
O17—Sm2—O15 159.69 (7) C13—C12—H12A 120.8
O10ii—Sm2—O4iv 148.20 (7) N2—C13—C12 121.8 (3)
O3iii—Sm2—O4iv 73.67 (7) N2—C13—C16 113.8 (2)
O17—Sm2—O4iv 99.20 (7) C12—C13—C16 124.4 (2)
O15—Sm2—O4iv 86.13 (7) O10—C14—O11 126.2 (2)
O10ii—Sm2—O11 76.61 (8) O10—C14—C9 117.2 (2)
O3iii—Sm2—O11 137.89 (7) O11—C14—C9 116.6 (2)
O17—Sm2—O11 72.89 (7) C14—O10—Sm2vii 149.34 (19)
O15—Sm2—O11 127.43 (6) C14—O11—Sm2 125.26 (16)
O4iv—Sm2—O11 79.98 (7) O13—C15—O12 121.9 (2)
O10ii—Sm2—O16 66.67 (7) O13—C15—C11 118.9 (2)
O3iii—Sm2—O16 70.83 (7) O12—C15—C11 119.2 (3)
O17—Sm2—O16 82.31 (7) O13—C15—Sm1 59.59 (13)
O15—Sm2—O16 81.90 (7) O12—C15—Sm1 63.06 (14)
O4iv—Sm2—O16 143.57 (7) C11—C15—Sm1 168.04 (17)
O11—Sm2—O16 133.64 (7) C15—O12—Sm1 91.30 (17)
O10ii—Sm2—N2 73.77 (7) C15—O13—Sm1 94.91 (15)
O3iii—Sm2—N2 136.39 (7) O14—C16—O15 125.1 (3)
O17—Sm2—N2 137.00 (8) O14—C16—C13 120.0 (2)
O15—Sm2—N2 63.27 (7) O15—C16—C13 114.9 (2)
O4iv—Sm2—N2 76.81 (6) C16—O15—Sm2 127.11 (17)
O11—Sm2—N2 64.22 (7) Sm2—O16—H16B 128.1
O16—Sm2—N2 125.92 (7) Sm2—O16—H16A 121.5
C1—N1—C5 120.1 (2) H16B—O16—H16A 104.5
C1—N1—Sm1 120.05 (16) Sm2—O17—H17B 117.1
C5—N1—Sm1 119.15 (16) Sm2—O17—H17A 121.9
N1—C1—C2 122.0 (2) H17B—O17—H17A 103.8
N1—C1—C6 113.8 (2) H18B—O18—H18A 100.8

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) x, y, z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1/2, y+1/2, −z+1/2; (vi) x, y, z−1; (vii) −x+1/2, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O14viii 0.82 1.87 2.686 (3) 172
O7—H7B···O2i 0.86 1.80 2.645 (3) 165
O8—H8A···O12iv 0.89 1.83 2.727 (3) 177
O8—H8B···O9ix 0.87 2.38 2.831 (3) 113
O9—H9A···O6viii 0.87 1.84 2.698 (3) 171
O9—H9B···O5viii 0.93 2.55 3.052 (3) 114
O16—H16A···O4viii 0.82 2.31 3.075 (3) 157
O16—H16B···O15x 0.79 1.97 2.747 (3) 171
O17—H17A···O18ii 0.84 1.86 2.697 (3) 176
O17—H17B···O5xi 0.80 1.96 2.731 (3) 162
O18—H18A···O14xii 0.85 2.06 2.905 (3) 174
O18—H18B···O13 0.82 1.93 2.736 (3) 168

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (viii) −x+1, −y, −z+1; (ix) x, y+1, z; (x) −x+1, −y, −z+2; (xi) x−1/2, −y+1/2, z+1/2; (xii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5233).

References

  1. Gao, H.-L., Yi, L., Ding, B., Wang, H.-S., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 481–483. [DOI] [PubMed]
  2. Ghosh, S. K. & Bharadwaj, P. K. (2005). Eur. J. Inorg. Chem. pp. 4886–4889.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Li, C.-J., Peng, M.-X., Leng, J.-D., Yang, M.-M., Lin, Z.-J. & Tong, M.-L. (2008). CrystEngComm, 10, 1645–1652.
  5. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851–1857.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812002462/cv5233sup1.cif

e-68-0m287-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002462/cv5233Isup2.hkl

e-68-0m287-Isup2.hkl (243.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES